Babcock R, Bull G, Harrison PL, Heyward AJ, Oliver J, Wallace C, et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar Biol. 1986;90(3):379–94.
Article
Google Scholar
Babcock R, Mundy C. Reproductive biology, spawning and field fertilization rates of Acanthaster planci. Austr J Mar Freshw Res. 1992;43(3):525–33.
Article
Google Scholar
Babcock R, Mundy C, Keesing J, Oliver J. Predictable and unpredictable spawning events: in situ behavioural data from free-spawning coral reef invertebrates. Invertebr Reprod Dev. 1992;22(1–3):213–27.
Article
Google Scholar
Olive P. Annual breeding cycles in marine invertebrates and environmental temperature: probing the proximate and ultimate causes of reproductive synchrony. J Therm Biol. 1995;20(1–2):79–90.
Article
Google Scholar
Levitan D. The ecology of fertilization in free-spawning invertebrates. In: McEdward LR, editor. Ecology of Marine Larvae. Boca Raton: CRC Press; 1995. p. 123–56.
Watson G, Bentley M, Gaudron S, Hardege J. The role of chemical signals in the spawning induction of polychaete worms and other marine invertebrates. J Exp Mar Biol Ecol. 2003;294(2):169–87.
Article
CAS
Google Scholar
Mercier A, Hamel JF. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Adv Mar Biol. 2009;55(xi-xii):1–291.
York PS, Cummins SF, Degnan SM, Woodcroft BJ, Degnan BM. Marked changes in neuropeptide expression accompany broadcast spawnings in the gastropod Haliotis asinina. Front Zool. 2012;9(1):9.
Article
CAS
Google Scholar
Takeda N, Nakajima Y, Koizumi O, Fujisawa T, Takahashi T, Matsumoto M, et al. Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. Mol Reprod Dev. 2013;80(3):223–32.
Article
CAS
Google Scholar
Van In V, Ntalamagka N, O’Connor W, Wang T, Powell D, Cummins SF, et al. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata). Peptides. 2016;82:109–19.
Article
CAS
Google Scholar
Di Giorgio NP, Bizzozzero-Hiriart M, Libertun C, Lux-Lantos V. Unravelling the connection between GABA and Kisspeptin in the control of reproduction. Reproduction. 2019;157(6):R225–33.
Article
CAS
Google Scholar
Bowner T. Reproduction in Amphiura filiformis (Echinodermata: Ophiuroidea): seasonality in gonad development. Mar Biol. 1982;69(3):281–90.
Article
Google Scholar
Tyler PA, Gage JD. Seasonal reproduction of Echinus affinis (Echinodermata: Echinoidea) in the Rockall Trough, northeast Atlantic Ocean. Deep Sea Res A. 1984;31(4):387–402.
Article
Google Scholar
Pearse JS, Cameron RA. Echinodermata: Echinoidea. In: Giese AC, Pearse JS, Pearse VB, editors. Reproduction of marine invertebrates, vol. 6: Echinoderms and lophophorates. Pacific Grove: Boxwood Press; 1991. p. 513–662.
Freeman SM, Richardson CA, Seed R. Seasonal abundance, spatial distribution, spawning and growth of Astropecten irregularis (Echinodermata: Asteroidea). Estuar Coast Shelf Sci. 2001;53(1):39–49.
Article
Google Scholar
Williamson JE, Steinberg PD. Reproductive cycle of the sea urchin Holopneustes purpurascens (Temnopleuridae: Echinodermata). Mar Biol. 2002;140(3):519–32.
Article
Google Scholar
Uthicke S, Schaffelke B, Byrne M. A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr. 2009;79(1):3–24.
Article
Google Scholar
Benítez-Villalobos F, Avila-Poveda OH, Gutiérrez-Méndez IS. Reproductive biology of Holothuria fuscocinerea (Echinodermata: holothuroidea) from Oaxaca, Mexico. Sex Early Dev Aquat Org. 2013;1(1):13–24.
Article
Google Scholar
Young C, Tyler P, Cameron J, Rumrill S. Seasonal breeding aggregations in low-density populations of the bathyal echinoid Stylocidaris lineata. Mar Biol. 1992;113(4):603–12.
Article
Google Scholar
Levitan DR, Sewell MA, Chia F-S. How distribution and abundance influence fertilization success in the sea urchin Strongylocentotus franciscanus. Ecology. 1992;73(1):248–54.
Article
Google Scholar
Byrne M, Morrice M, Wolf B. Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: reproduction and current distribution. Mar Biol. 1997;127(4):673–85.
Article
Google Scholar
Babcock RC, Milton DA, Pratchett MS. Relationships between size and reproductive output in the crown-of-thorns starfish. Mar Biol. 2016;163:234.
Chesher RH. Destruction of Pacific corals by the sea star Acanthaster planci. Science. 1969;165(3890):280–3.
Article
CAS
Google Scholar
Lowe S, Browne M, Boudjelas S, De Poorter M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. New Zealand: Invasive Species Specialist Group Auckland; 2000.
Baird AH, Pratchett MS, Hoey A, Herdiana Y, Campbell SJ. Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs. 2013;32(3):803–12.
Article
Google Scholar
Riegl B, Berumen M, Bruckner A. Coral population trajectories, increased disturbance and management intervention: a sensitivity analysis. Ecol Evol. 2013;3(4):1050–64.
Article
Google Scholar
De’Ath G, Fabricius KE, Sweatman H, Puotinen M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA. 2012;109(44):17995–9.
Article
Google Scholar
Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature. 2017;544(7649):231–4.
Sorensen PW, Johnson NS. Theory and application of semiochemicals in nuisance fish control. J Chem Ecol. 2016;42(7):698–715.
Article
CAS
Google Scholar
Hume JB, Luhring TM, Wagner CM. Push, pull, or push–pull? An alarm cue better guides sea lamprey towards capture devices than a mating pheromone during the reproductive migration. Biol Invasions. 2020;22(7):2129–42.
Article
Google Scholar
Escobar LE, Mallez S, McCartney M, Lee C, Zielinski DP, Ghosal R, et al. Aquatic invasive species in the Great Lakes Region: an overview. Rev Fish Sci Aquac. 2018;26(1):121–38.
Article
Google Scholar
Fissette SD, Buchinger TJ, Wagner CM, Johnson NS, Scott AM, Li W. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J Great Lakes Res. 2021;47:S660–72.
Article
CAS
Google Scholar
Motti CA, Bose U, Roberts RE, McDougall C, Smith MK, Hall MR, et al. Chemical ecology of chemosensation in Asteroidea: insights towards management strategies of pest species. J Chem Ecol. 2018;44(2):147–77.
Article
CAS
Google Scholar
Hirohashi N, Kamei N, Kubo H, Sawada H, Matsumoto M, Hoshi M. Egg and sperm recognition systems during fertilization. Dev Growth Differ. 2008;50(s1):S221–38.
Article
CAS
Google Scholar
Podolsky R, Strathmann R. Evolution of egg size in free-spawners: consequences of the fertilization-fecundity trade-off. Am Nat. 1996;148(1):160–73.
Article
Google Scholar
Nishigaki T, Chiba K, Hoshi M. A 130-kDa membrane protein of sperm flagella is the receptor for asterosaps, sperm-activating peptides of starfish Asterias amurensis. Dev Biol. 2000;219(1):154–62.
Article
CAS
Google Scholar
Kawamura M, Matsumoto M, Hoshi M. Characterization of the sperm receptor for acrosome reaction-inducing substance of the starfish Asterias amurensis. Zool Sci. 2002;19(4):435–42.
Patiño S, Keever CC, Sunday JM, Popovic I, Byrne M, Hart MW. Sperm bindin divergence under sexual selection and concerted evolution in sea stars. Mol Biol Evol. 2016;33(8):1988–2001.
Article
CAS
Google Scholar
Patiño S, Aagaard JE, MacCoss MJ, Swanson WJ, Hart MW. Bindin from a sea star. Evol Dev. 2009;11(4):376–81.
Article
Google Scholar
Wilburn DB, Swanson WJ. From molecules to mating: rapid evolution and biochemical studies of reproductive proteins. J Proteomics. 2016;135:12–25.
Article
CAS
Google Scholar
Hoshi M, Moriyama H, Matsumoto M. Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: a mini review. Biochem Biophys Res Commun. 2012;425(3):595–8.
Article
CAS
Google Scholar
Elphick MR, Mirabeau O. The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates. Front Endocrinol (Lausanne). 2014;5:93.
Article
Google Scholar
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, et al. The biology of the germ line in echinoderms. Mol Reprod Dev. 2014;81(8):679–711.
Article
CAS
Google Scholar
Song JL, Wong JL, Wessel GM. Oogenesis: single cell development and differentiation. Dev Biol. 2006;300(1):385–405.
Article
CAS
Google Scholar
Sun Z-H, Wei J-L, Cui Z-P, Han Y-L, Zhang J, Song J, et al. Identification and functional characterization of piwi1 gene in sea cucumber, Apostichopus japonicas. Comp Biochem Physiol B Biochem Mol Biol. 2021;252:110536.
Sun J-J, Sun Z-H, Wei J-L, Ding J, Song J, Chang Y-Q. Identification and functional analysis of foxl2 and nodal in sea cucumber Apostichopus japonicus. Gene Expr Patterns. 2022;44:119245.
Huang D, Zhang B, Han T, Liu G, Chen X, Zhao Z, et al. Genome-wide prediction and comparative transcriptomic analysis reveals the G protein-coupled receptors involved in gonadal development of Apostichopus japonicus. Genomics. 2021;113(1):967–78.
Article
CAS
Google Scholar
Zhang S, Zhang L, Ru X, Ding K, Feng Q. Transcriptome analysis of gender-biased CYP genes in gonads of the sea cucumber Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics. 2021;38:100790.
Cui Z, Zhang J, Sun Z, Liu B, Han Y, Zhao C, et al. Testis-specific expression pattern of dmrt1 and its putative regulatory region in the sea urchin (Mesocentrotus nudus). Comp Biochem Physiol B Biochem Mol Biol. 2022;257:110668.
Zhang J, Sun Z-H, Liu B-Z, Su W-Y, Chang Y-Q. Sexually dimorphic expression of foxl2 in the sea urchin (Mesocentrotus nudus). Gene Expr Patterns. 2022;46:119280.
Kanatani H. Mechanism of starfish spawning with special reference to gonad-stimulating substance (GSS) of nerve and meiosis-inducing substance (MIS) of gonad. Jpn J Exp Morph. 1967;21:61–78.
Google Scholar
Strathmann R, Sato H. Increased germinal vesicle breakdown in oocytes of the sea cucumber Parastichopus californicus induced by starfish radial nerve extract. Exp Cell Res. 1969;54(1):127–9.
Article
CAS
Google Scholar
Cochran RC, Engelmann F. Echinoid spawning induced by a radial nerve factor. Science. 1972;178(4059):423–4.
Article
CAS
Google Scholar
Maruyama YK. Holothurian oocyte maturation induced by radial nerve. Biol Bull. 1985;168(2):249–62.
Article
Google Scholar
Katow H, Katow T, Moriyama A. Gonad-stimulating substance-like molecule from the radial nerve of the sea cucumber. Int J Dev Biol. 2004;53(4):483–91.
Article
Google Scholar
Elphick MR. From gonadotropin-inhibitory hormone to SIFamides: are echinoderm SALMFamides the “missing link” in a bilaterian family of neuropeptides that regulate reproductive processes? Gen Comp Endocrinol. 2013;193:229–33.
Article
CAS
Google Scholar
Chaet AB, McConnaughy RA. Physiologic activity of nerve extracts. Biol Bull. 1959;117:407–8.
Google Scholar
Kanatani H. Hormones in echinoderms. In: Barrington E, editor. Hormones and evolution. New York: Academic Press; 1979. p. 273–307.
Mita M, Yoshikuni M, Ohno K, Shibata Y, Paul-Prasanth B, Pitchayawasin S, et al. A relaxin-like peptide purified from radial nerves induces oocyte maturation and ovulation in the starfish, Asterina pectinifera. Proc Natl Acad Sci U S A. 2009;106(23):9507–12.
Article
CAS
Google Scholar
Mita M, Ikeda N, Haraguchi S, Tsutsui K, Nakano Y, Nakamura M. A gonad-stimulating peptide of the crown-of-thorns starfish Acanthaster planci. Invertebr Reprod Dev. 2015;59(4):212–7.
Mita M. Starfish gonadotropic hormone: relaxin-like gonad-stimulating peptides. Gen Comp Endocrinol. 2016;230-1:166–9.
Article
Google Scholar
Mita M, Osugi T, Kawada T, Satake H, Katayama H, Kitamura T, et al. Characterization and localization of relaxin-like gonad-stimulating peptide in the crown-of-thorns starfish, Acanthaster cf. solaris. Gen Comp Endocrinol. 2022;328:114107.
Kanatani H, Ohguri M. Mechanism of starfish spawning. I. Distribution of active substance responsible for maturation of oocytes and shedding of gametes. Biol Bull. 1966;131(1):104–14.
Article
Google Scholar
Mita M. Release of relaxin-like gonad-stimulating substance from starfish radial nerves by ionomycin. Zoolog Sci. 2013;30(7):602–6.
Article
CAS
Google Scholar
Lin M, Mita M, Egertova M, Zampronio CG, Jones AM, Elphick MR. Cellular localization of relaxin-like gonad-stimulating peptide expression in Asterias rubens: new insights into neurohormonal control of spawning in starfish. J Comp Neurol. 2017;525(7):1599–617.
Article
CAS
Google Scholar
Smith MK, Chieu HD, Aizen J, Mos B, Motti CA, Elizur A, et al. A crown-of-thorns seastar recombinant relaxin-like gonad-stimulating peptide triggers oocyte maturation and ovulation. Gen Comp Endocrinol. 2019;281:41–8.
Article
CAS
Google Scholar
Hirai S, Kanatani H. Site of production of meiosis-inducing substance in ovary of starfish. Exp Cell Res. 1971;67(1):224–7.
Article
CAS
Google Scholar
Hirai S, Chida K, Kanatani H. Role of follicle cells in maturation of starfish oocytes. Dev Growth Differ. 1973;15(1):21–31.
Article
CAS
Google Scholar
Kubota J, Nakao K, Shirai H, Kanatani H. 1-Methyladenine-producing cell in starfish testis. Exp Cell Res. 1977;106(1):63–70.
Article
CAS
Google Scholar
Mita M, Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. A novel G protein-coupled receptor for starfish gonadotropic hormone, relaxin-like gonad-stimulating peptide. PLoS One. 2020;15(11):e0242877.
Article
CAS
Google Scholar
Mita M, Osugi T, Takahashi T, Watanabe T, Satake H. Mechanism of gamete shedding in starfish: involvement of acetylcholine in extracellular Ca2+-dependent contraction of gonadal walls. Gen Comp Endocrinol. 2020;290:113401.
Article
CAS
Google Scholar
Kanatani H, Shirai H, Nakanishi K, Kurokawa T. Isolation and identification of meiosis inducing substance in starfish Asterias amurensis. Nature. 1969;221(5177):273–4.
Article
CAS
Google Scholar
Kanatani H. Maturation-inducing substance in starfishes. Int Rev Cytol. 1973;35:253–98.
Article
CAS
Google Scholar
Kanatani H. Oocyte growth and maturation in starfish. In: Metz CB, Monroy A, editors. Biology of fertilization, vol. 1. New York: Academic Press; 1985. p. 119–40.
Guerrier P, Moreau M, Doree M. Hormonal control of meiosis in starfish: stimulation of protein phosphorylation induced by 1-methyladenine. Mol Cell Endocrinol. 1977;7(2):137–50.
Article
CAS
Google Scholar
Chiba K. Meiosis reinitiation in starfish oocyte. Zoolog Sci. 2000;17(4):413–7.
CAS
Google Scholar
Kishimoto T. Entry into mitosis: a solution to the decades-long enigma of MPF. Chromosoma. 2015;124(4):417–28.
Article
CAS
Google Scholar
Kishimoto T, Usui N, Kanatani H. Breakdown of starfish ovarian follicle induced by maturation-promoting factor. Dev Biol. 1984;101(1):28–34.
Article
CAS
Google Scholar
Mita M, Nakamura M. Influence of gonad-stimulating substance on ovarian 1-methyladenine levels responsible for germinal vesicle breakdown and spawning in the starfish Asterina pectinifera. J Exp Zool. 1994;269(2):140–5.
Article
CAS
Google Scholar
Beach D, Hanscomb N, Ormond R. Spawning pheromone in crown-of-thorns starfish. Nature. 1975;254(5496):135–6.
Article
CAS
Google Scholar
McEuen FS. Spawning behaviors of northeast Pacific sea cucumbers (Holothuroidea: Echinodermata). Mar Biol. 1988;98(4):565–85.
Article
Google Scholar
Miller RL. Evidence for the presence of sexual pheromones in free-spawning starfish. J Exp Mar Biol Ecol. 1989;130(3):205–21.
Article
CAS
Google Scholar
Morgan AD. Induction of spawning in the sea cucumber Holothuria scabra (Echinodermata: Holothuroidea). J World Aquac Soc. 2000;31(2):186–94.
Article
Google Scholar
Himmelman JH, Dumont CP, Gaymer CF, Vallieres C, Drolet D. Spawning synchrony and aggregative behaviour of cold-water echinoderms during multi-species mass spawnings. Mar Ecol Prog Ser. 2008;361:161–8.
Article
Google Scholar
Pratchett MS, Caballes CF, Rivera-Posada JA, Sweatman HPA. Limits to understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster spp.). In: Hughes RN, Hughes DJ, Smith IP, editors. Oceanography and Marine Biology: An Annual Review, vol. 52. London: CRC Press; 2014. p. 133–200.
Caballes CF, Pratchett MS. Environmental and biological cues for spawning in the crown-of-thorns starfish. PLoS ONE. 2017;12(3):e0173964.
Marquet N, Hubbard PC, da Silva JP, Afonso J, Canario AVM. Chemicals released by male sea cucumber mediate aggregation and spawning behaviours. Sci Rep. 2018;8(1):239.
Article
Google Scholar
Haszprunar G, Spies M. An integrative approach to the taxonomy of the crown-of-thorns starfish species group (Asteroidea: Acanthaster): a review of names and comparison to recent molecular data. Zootaxa. 2014;3841(2):271–84.
Article
Google Scholar
Pearson RG, Endean R. A preliminary study of the coral predator Acanthaster planci (L.) (Asteroidea) on the Great Barrier Reef. Queensl Dept Harb Mar Fish Notes. 1969;3:27–55.
Google Scholar
Lucas JS. Reproductive and larval biology of Acanthaster planci (L.) in Great Barrier Reef waters. Micronesica. 1973;9(2):197–203.
Google Scholar
Caballes CF, Pratchett MS. Reproductive biology and early life history of the crown-of-thorns starfish. In: Whitmore E, editor. Echinoderms: Ecology, Habitats and Reproductive Biology. New York: Nova Science Publishers, Inc.; 2014. p. 101–46.
Caballes CF, Byrne M, Messmer V, Pratchett MS. Temporal variability in gametogenesis and spawning patterns of crown-of-thorns starfish within the outbreak initiation zone in the northern Great Barrier Reef. Mar Biol. 2021;168(1):13.
Mercier A, Hamel JF. Reproduction in Asteroidea. In: Lawrence JL, editor. Starfish: biology and ecology of the Asteroidea. Baltimore: The John Hopkins University Press; 2013. p. 37–50.
Colgan MW. Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci. Ecology. 1987;68(6):1592–605.
Article
Google Scholar
Babcock R, Mundy C, Whitehead D. Sperm diffusion models and in situ confirmation of long-distance fertilization in the free-spawning asteroid Acanthaster planci. Biol Bull. 1994;186(1):17–28.
Article
CAS
Google Scholar
Timmers MA, Andrews KR, Bird CE, deMaintenton MJ, Brainard RE, Toonen RJ. Widespread dispersal of the crown-of-thorns sea star, Acanthaster planci, across the Hawaiian Archipelago and Johnston Atoll. J Mar Biol. 2011;2011:934269.
Kayal M, Vercelloni J, De Loma TL, Bosserelle P, Chancerelle Y, Geoffroy S, et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One. 2012;7(10):e47363.
Timmers MA, Bird CE, Skillings DJ, Smouse PE, Toonen RJ. There’s no place like home: crown-of-thorns outbreaks in the Central Pacific are regionally derived and independent events. PLoS ONE. 2012;7(2):e31159.
Haywood M, Thomson D, Babcock R, Pillans R, Keesing J, Miller M, et al. Crown-of-thorns starfish impede the recovery potential of coral reefs following bleaching. Mar Biol. 2019;166(7):1-15.
Article
Google Scholar
Dale J. Coordination of chemosensory orientation in the starfish Asterias forbesi. Mar Freshw Behav Physiol. 1999;32(1):57–71.
Article
Google Scholar
Roberts RE, Motti CA, Baughman KW, Satoh N, Hall MR, Cummins SF. Identification of putative olfactory G-protein coupled receptors in crown-of-thorns starfish, Acanthaster planci. BMC Genomics. 2017;18(1):400.
Article
Google Scholar
Roberts RE, Powell D, Wang T, Hall MH, Motti CA, Cummins SF. Putative chemosensory receptors are differentially expressed in the sensory organs of male and female crown-of-thorns starfish, Acanthaster planci. BMC Genomics. 2018;19(1):853.
Article
CAS
Google Scholar
Jia ZY, Wang QA, Wu KK, Wei ZL, Zhou ZC, Liu XL. De novo transcriptome sequencing and comparative analysis to discover genes involved in ovarian maturity in Strongylocentrotus nudus. Comp Biochem Physiol Part D Genomics Proteomics. 2017;23:27–38.
Article
CAS
Google Scholar
Sun ZH, Zhang J, Zhang WJ, Chang YQ. Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene. 2019;698:72–81.
Article
CAS
Google Scholar
Wei ZL, Liu XL, Zhou ZC, Xu JX. De novo transcriptomic analysis of gonad of Strongylocentrotus nudus and gene discovery for biosynthesis of polyunsaturated fatty acids. Genes Genomics. 2019;41(5):583–97.
Article
CAS
Google Scholar
Levy T, Zupo V, Mutalipassi M, Somma E, Ruocco N, Costantini M, et al. Protandric transcriptomes to uncover parts of the Crustacean sex-differentiation puzzle. Front Mar Sci. 2021;8:745540.
Réalis-Doyelle E, Schwartz J, Cabau C, Le Franc L, Bernay B, Rivière G, et al. Transcriptome profiling of the Pacific oyster Crassostrea gigas visceral ganglia over a reproduction cycle identifies novel regulatory peptides. Mar Drugs. 2021;19(8):452.
Machado AM, Fernández-Boo S, Nande M, Pinto R, Costas B, Castro LFC. The male and female gonad transcriptome of the edible sea urchin, Paracentrotus lividus: identification of sex-related and lipid biosynthesis genes. Aquac Rep. 2022;22:100936.
Vacquier VD, Moy GW. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci U S A. 1977;74(6):2456–60.
Article
CAS
Google Scholar
Matsumoto M, Solzin J, Helbig A, Hagen V, Ueno S, Kawase O, et al. A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev Biol. 2003;260(2):314–24.
Article
CAS
Google Scholar
Hart MW. Structure and evolution of the sea star egg receptor for sperm bindin. Mol Ecol. 2013;22(8):2143–56.
Article
CAS
Google Scholar
Guerra V, Haynes G, Byrne M, Yasuda N, Adachi S, Nakamura M, et al. Nonspecific expression of fertilization genes in the crown-of-thorns Acanthaster cf solaris: unexpected evidence of hermaphroditism in a coral reef predator. Mol Ecol. 2020;29(2):363–79.
Article
Google Scholar
Wessel GM, Wada Y, Yajima M, Kiyomoto M. Bindin is essential for fertilization in the sea urchin. Proc Natl Acad Sci U S A. 2021;118(34):e2109636118.
NCBI BioProject PRJNA821257. https://identifiers.org/bioproject:PRJNA821257. Released 4 Oct 2022.
Morin M, Jönsson M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Crown-of-thorns starfish in captivity experience sustained large-scale changes in gene expression.bioRxiv. 2022:2022.07.21.501052. https://doi.org/10.1101/2022.07.21.501052.
Smith JT, Li Q, Yap KS, Shahab M, Roseweir AK, Millar RP, et al. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology. 2011;152(3):1001–12.
Article
CAS
Google Scholar
Pasquier J, Kamech N, Lafont AG, Vaudry H, Rousseau K, Dufour S. Kisspeptin/kisspeptin receptors. J Mol Endocrinol. 2014;52(3):T101–17.
Article
CAS
Google Scholar
Bakker J, Pierman S, González-Martínez D. Effects of aromatase mutation (ArKO) on the sexual differentiation of kisspeptin neuronal numbers and their activation by same versus opposite sex urinary pheromones. Horm Behav. 2010;57(4–5):390–5.
Article
CAS
Google Scholar
Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. J Exp Biol. 2018;221(3):jeb151092.
Wang T, Cao Z, Shen Z, Yang J, Chen X, Yang Z, et al. Existence and functions of a kisspeptin neuropeptide signaling system in a non-chordate deuterostome species. Elife. 2020;9:e53370.
Hoskins LJ, Xu M, Volkoff H. Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus). Horm Behav. 2008;54(3):379–85.
Article
CAS
Google Scholar
Smith MK, Wang T, Suwansa-Ard S, Motti CA, Elizur A, Zhao M, et al. The neuropeptidome of the crown-of-thorns starfish Acanthaster planci. J Proteomics. 2017;165:61–8.
Buznikov G, Podmarev V. The sea urchins Strongylocentrotus droebachiensis, S. nudus, and S. intermedius. In: Dettlaff A, Vassetzky SG, editors. Animal species for developmental studies. Boston: Springer; 1990. p. 253–85.
Mutschke E, Mah C. Asteroidea–starfish. In: Häussermann V, Fösterra G, editors. Marine Benthic Fauna of Chilean Patagonia. Santiago: Nature in Focus; 2009. p. 802–30.
Mariante FL, Lemos GB, Eutrópio FJ, Castro RR, Gomes LC. Reproductive biology in the starfish Echinaster (Othilia) guyanensis (Echinodermata: Asteroidea) in southeastern Brazil. Zoologia (Curitiba). 2010;27(6):897–901.
Article
Google Scholar
Pratas D, Santos F, Dias S, Rodrigues V, Couto M, Santos R, et al. Development of techniques for gender identification in Holothuria forskali (Delle Chiaje, 1823). Beche-de-Mer Inf Bull. 2017;37:95–8.
Google Scholar
Birkeland C, Lucas J. Acanthaster planci: major management problem of coral reefs. Boca Raton: CRC Press; 1990.
Keesing JK, Halford AR, Hall KC, Cartwright CM. Large-scale laboratory culture of the crown-of-thorns starfish Acanthaster planci (L.) (Echinodermata: Asteroidea). Aquaculture. 1997;157(3):215–26.
Article
Google Scholar
Soong K, Chang D, Chao SM. Presence of spawn-inducing pheromones in two brittle stars (Echinodermata: Ophiuroidea). Mar Ecol Prog Ser. 2005;292:195–201.
Article
Google Scholar
Kishimoto T, Hirai S, Kanatani H. Role of germinal vesicle material in producing maturation-promoting factor in starfish oocyte. Dev Biol. 1981;81(1):177–81.
Article
CAS
Google Scholar
Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL. Cyclin is a component of maturation-promoting factor from Xenopus. Cell. 1990;60(3):487–94.
Article
CAS
Google Scholar
Naruse M, Ishikawa R, Sakaya H, Moriyama H, Hoshi M, Matsumoto M. Novel conserved structural domains of acrosome reaction-inducing substance are widespread in invertebrates. Mol Reprod Dev. 2011;78(1):57–66.
Article
CAS
Google Scholar
Shi Q. Melatonin is involved in sex change of the ricefield eel, Monopterus albus zuiew. Rev Fish Biol Fish. 2005;15(1-2):23–6.
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 2012;28(4):175–84.
Article
CAS
Google Scholar
Singh AK, Singh R. In vivo response of melatonin, gonadal activity and biochemical changes during CYP19 inhibited sex reversal in common carp Cyprinus carpio (L). Anim Reprod Sci. 2013;136(4):317–25.
Article
CAS
Google Scholar
Traylor-Knowles NG, Kane EG, Sombatsaphay V, Finnerty JR, Reitzel AM. Sex-specific and developmental expression of Dmrt genes in the starlet sea anemone, Nematostella vectensis. EvoDevo. 2015;6(1):13.
Sivalingam M, Parhar IS. Hypothalamic kisspeptin and kisspeptin receptors: species variation in reproduction and reproductive behaviours. Front Neuroendocrinol. 2022;64:100951.
Trudeau VL, Somoza GM, Nahorniak CS, Peter RE. Interactions of estradiol with gonadotropin-releasing hormone and thyrotropin-releasing hormone in the control of growth hormone secretion in the goldfish. Neuroendocrinology. 1992;56(4):483–90.
Article
CAS
Google Scholar
Hagman DK, Vize PD. Mass spawning by two brittle star species, Ophioderma rubicundum and O. squamosissimum (Echinodermata: Ophiuroidea), at the Flower Garden Banks, Gulf of Mexico. Bull Mar Sci. 2003;72(3):871–6.
Unger B, Lott C. In-situ studies on the aggregation behaviour of the sea urchin Sphaerechinus granulans Lam.(Echinodermata: Echinoidea). In: David B, Guille A, Feral JP, Roux M, editors. Echinoderms through time. Balkema: CRC Press; 1994. p. 913–9.
Thorson G. Reproductive and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc. 1950;25(1):1–45.
Article
CAS
Google Scholar
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, et al. Neuropeptidome of the cephalopod Sepia officinalis: identification, tissue mapping, and expression pattern of neuropeptides and neurohormones during egg laying. J Proteome Res. 2016;15(1):48–67.
Article
CAS
Google Scholar
Andreatta G, Broyart C, Borghgraef C, Vadiwala K, Kozin V, Polo A, et al. Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc Natl Acad Sci. 2020;117(2):1097–106.
Article
CAS
Google Scholar
Wessel GM, Goldberg L, Lennarz WJ, Klein WH. Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA. Dev Biol. 1989;136(2):526–36.
Article
CAS
Google Scholar
McDougall C, Hammond MJ, Dailey SC, Somorjai IM, Cummins SF, Degnan BM. The evolution of ependymin-related proteins. BMC Evol Biol. 2018;18(1):1–13.
Article
Google Scholar
Kratzsch J, Selisko T, Birkenmeier G. Identification of transformed alpha 2-macroglobulin as a growth hormone-binding protein in human blood. The J Clin Endocrinol Metab. 1995;80(2):585–90.
CAS
Google Scholar
Vaughan JM, Vale W. Alpha 2-macroglobulin is a binding protein of inhibin and activin. Endocrinology. 1993;132(5):2038–50.
Article
CAS
Google Scholar
Borth W. α2 Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 1992;6(15):3345–53.
Article
CAS
Google Scholar
Glander H-J, Kratzsch J, Weisbrich C, Birkenmeier G. Andrology: insulin-like growth factor-I and α2-macroglobulin in seminal plasma correlate with semen quality. Hum Reprod. 1996;11(11):2454–60.
Article
CAS
Google Scholar
Dreanno C, Matsumura K, Dohmae N, Takio K, Hirota H, Kirby RR, et al. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Natl Acad Sci. 2006;103(39):14396–401.
Article
CAS
Google Scholar
Cummins SF, Boal JG, Buresch KC, Kuanpradit C, Sobhon P, Holm JB, et al. Extreme aggression in male squid induced by a β-MSP-like pheromone. Curr Biol. 2011;21(4):322–7.
Article
CAS
Google Scholar
Hamel J-F, Mercier A. Mucus as a mediator of gametogenic synchrony in the sea cucumber Cucumaria frondosa (Holothuroidea: Echinodermata). J Mar Biol Assoc U K. 1999;79(1):121–9.
Article
Google Scholar
Hamel JF, Mercier A. Evidence of chemical communication during the gametogenesis of holothuroids. Ecology. 1996;77(5):1600–16.
Article
Google Scholar
Cummins SF, Schein CH, Xu Y, Braun W, Nagle GT. Molluscan attractins, a family of water-borne protein pheromones with interspecific attractiveness. Peptides. 2005;26(1):121–9.
Article
CAS
Google Scholar
Pila EA, Peck SJ, Hanington PC. The protein pheromone temptin is an attractant of the gastropod Biomphalaria glabrata. J Comp Physiol A. 2017;203(10):855–66.
Article
CAS
Google Scholar
Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S. cDNA eloping of bovine substance-K receptor through oocyte expression system. Nature. 1987;329(6142):836–8.
Article
CAS
Google Scholar
Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999;18(7):1723–9.
Article
CAS
Google Scholar
Pin J-P, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther. 2003;98(3):325–54.
Article
CAS
Google Scholar
Ache BW, Young JM. Olfaction: diverse species, conserved principles. Neuron. 2005;48(3):417–30.
Article
CAS
Google Scholar
Caillol M, Aı̈oun J, Baly C, Persuy M-A, Salesse R. Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res. 2003;960(1):48–61.
Article
CAS
Google Scholar
Palouzier-Paulignan B, Lacroix M-C, Aimé P, Baly C, Caillol M, Congar P, et al. Olfaction under metabolic influences. Chem Senses. 2012;37(9):769–97.
Article
CAS
Google Scholar
Apelbaum A, Perrut A, Chaput M. Orexin A effects on the olfactory bulb spontaneous activity and odor responsiveness in freely breathing rats. Regul Pept. 2005;129(1):49–61.
Article
CAS
Google Scholar
Hardy AB, Aïoun J, Baly C, Julliard KA, Caillol M, Salesse R, et al. Orexin A modulates mitral cell activity in the rat olfactory bulb: patch-clamp study on slices and immunocytochemical localization of orexin receptors. Endocrinology. 2005;146(9):4042–53.
Article
CAS
Google Scholar
Prud’Homme MJ, Lacroix M-C, Badonnel K, Gougis S, Baly C, Salesse R, et al. Nutritional status modulates behavioural and olfactory bulb Fos responses to isoamyl acetate or food odour in rats: roles of orexins and leptin. Neuroscience. 2009;162(4):1287–98.
Article
Google Scholar
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, et al. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol. 2022;20(1):187.
Elphick MR, Price DA, Lee TD, Thorndyke MC. The SALMFamides: a new family of neuropeptides isolated from an echinoderm. Proc R Soc Lond B Biol Sci. 1991;243(1307):121–7.
Article
CAS
Google Scholar
Elphick MR. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms. Gen Comp Endocrinol. 2014;205:23–35.
Article
CAS
Google Scholar
Ferguson JC. Nutrient transport in starfish. I. Properties of the coelomic fluid. Biol Bull. 1964;126(1):33–53.
Article
Google Scholar
Holland LZ, Giese AC, Phillips JH. Studies on the perivisceral coelomic fluid protein concentration during seasonal and nutritional changes in the purple sea urchin. Comp Biochem Physiol. 1967;21(2):361–71.
Article
CAS
Google Scholar
Shabelnikov SV, Bobkov DE, Sharlaimova NS, Petukhova OA. Injury affects coelomic fluid proteome of the common starfish, Asterias rubens. J Exp Biol. 2019;222(6):jeb198556.
Article
Google Scholar
Elphick MR, Newman SJ, Thorndyke MC. Distribution and action of SALMFamide neuropeptides in the starfish Asterias rubens. J Exp Biol. 1995;198(12):2519–25.
Article
CAS
Google Scholar
Mercier A, Hamel JF. Perivisceral coelomic fluid as a mediator of spawning induction in tropical holothurians. Invertebr Reprod Dev. 2002;41(1–3):223–34.
Article
Google Scholar
Ajayi A, Withyachumnarnkul B. Presence and distribution of FMRFamide-like immunoreactivity in the sea cucumber Holothuria scabra (Jaeger, 1833). Zoomorphology. 2013;132(3):285–300.
Article
Google Scholar
Dheilly NM, Raftos DA, Haynes PA, Smith LC, Nair SV. Shotgun proteomics of coelomic fluid from the purple sea urchin Strongylocentrotus purpuratus. Dev Comp Immunol. 2013;40(1):35–50.
Tian S, Zandawala M, Beets I, Baytemur E, Slade SE, Scrivens JH, et al. Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways. Sci Rep. 2016;6(1):28788.
Tian S, Egertova M, Elphick MR. Functional characterization of paralogous gonadotropin-releasing hormone-type and corazonin-type neuropeptides in an echinoderm. Front Endocrinol. 2017;8:259.
Article
Google Scholar
Perez-Portela R, Riesgo A. Optimizing preservation protocols to extract high-quality RNA from different tissues of echinoderms for next-generation sequencing. Mol Ecol Resour. 2013;13(5):884–9.
Article
CAS
Google Scholar
Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17(1):77.
Article
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge: Babraham Bioinformatics, Babraham Institute; 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 12 Dec 2022.
Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666–73.
Article
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
Google Scholar
Sogabe S, Hatleberg WL, Kocot KM, Say TE, Stoupin D, Roper KE, et al. Pluripotency and the origin of animal multicellularity. Nature. 2019;570(7762):519–22.
Article
CAS
Google Scholar
Sha Y, Phan JH, Wang MD. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data. Conf Proc IEEE Eng Med Biol Soc 2015. 2015:6461–4.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
Google Scholar
Kolde R, Kolde MR. Package ‘pheatmap.’ R package. 2015;1(7):790.
Google Scholar
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131(4):281–5.
Article
CAS
Google Scholar
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–40.
RStudio. RStudio: integrated development for R. Boston: RStudio, Inc; 2016. Available from: http://www.rstudio.com.
Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3.
Article
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
Google Scholar
Voss M, Schroder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta Biomembr. 2013;1828(12):2828–39.
Article
CAS
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinformatics. 2013;14(2):178–92.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490.
Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2019;47(Database issue):D23–8.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
Google Scholar
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–8.
Article
CAS
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
Article
CAS
Google Scholar
Leinonen R, Sugawara H, Shumway M, Collaboration obotINSD. The Sequence Read Archive. Nucleic Acids Res. 2010;39(suppl_1):D19–21.