Müller GB: Evo-devo: extending the evolutionary synthesis. Nat Rev Genet. 2007, 8: 943-949. 10.1038/nrg2219.
Article
PubMed
Google Scholar
Wagner GP, Lynch VJ: Evolutionary novelties. Curr Biol. 2009, 20: R48-R52. 10.1016/j.cub.2009.11.010.
Article
Google Scholar
Pigliucci M: What, if anything, is an evolutionary novelty?. Phil Sci. 2008, 75: 887-898. 10.1086/594532.
Article
Google Scholar
Stebbins GL: Adaptive radiation of reproductive characters in angiosperms I: pollination mechanisms. Ann Rev Ecol Syst. 1970, 1: 307-326. 10.1146/annurev.es.01.110170.001515.
Article
Google Scholar
Kingsolver JG, Koehl MAR: Selective factors in the evolution of insect wings. Annu Rev Entomol. 1994, 39: 425-451. 10.1146/annurev.en.39.010194.002233.
Article
Google Scholar
Baxter CE, Costa MM, Coen ES: Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J. 2007, 52: 105-113. 10.1111/j.1365-313X.2007.03222.x.
Article
CAS
PubMed
Google Scholar
Prum RO: Evolution of the morphological innovations of feathers. J Exp Zool B Mol Dev Evol. 2005, 304: 570-579. 10.1002/jez.b.21073.
Article
PubMed
Google Scholar
Bowsher JH, Nijhout HF: Partial co-option of the appendage patterning pathway in the development of abdominal appendages in the sepsid fly Themira biloba. Dev Genes Evol. 2009, 219: 577-587. 10.1007/s00427-010-0319-3.
Article
PubMed Central
PubMed
Google Scholar
Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE: Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr Biol. 2009, 19: 2057-2065. 10.1016/j.cub.2009.11.014.
Article
CAS
PubMed
Google Scholar
Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TC: More than just orphans: are taxonomically-restricted genes important in evolution?. Trends Genet. 2009, 25: 404-413. 10.1016/j.tig.2009.07.006.
Article
CAS
PubMed
Google Scholar
Galant R, Skeath JB, Paddock S, Lewis DL, Carroll SB: Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. Curr Biol. 1998, 8: 807-813. 10.1016/S0960-9822(98)70322-7.
Article
CAS
PubMed
Google Scholar
Reed RD: Evidence for Notch-mediated lateral inhibition in organizing butterfly wing scales. Dev Genes Evol. 2004, 214: 43-46. 10.1007/s00427-003-0366-0.
Article
CAS
PubMed
Google Scholar
Beldade P, Brakefield PM, Long AD: Generating phenotypic variation: prospects from "evo-devo" research on Bicyclus anynana wing patterns. Evol Dev. 2005, 7: 101-107. 10.1111/j.1525-142X.2005.05011.x.
Article
PubMed
Google Scholar
Reed RD, McMillan WO, Nagy LM: Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns. Proc Biol Sci. 2008, 275: 37-45. 10.1098/rspb.2007.1115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beldade P, Saenko SV: Evolutionary and developmental genetics of butterfly wing patterns: focus on Bicyclus anynana eyespots. Molecular Biology and Genetics of the Lepidoptera (Contemporary Topics in Entomology). Edited by: Goldsmith MR, Marec F. 2009, Boca Raton, FL: CRC Press, 89-104.
Google Scholar
Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RL, Gates J, Scott MP, Carroll SB: Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science. 1999, 283: 532-534. 10.1126/science.283.5401.532.
Article
CAS
PubMed
Google Scholar
Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB: The generation and diversification of butterfly eyespot color patterns. Curr Biol. 2001, 11: 1578-1585. 10.1016/S0960-9822(01)00502-4.
Article
CAS
PubMed
Google Scholar
Saenko SV, French V, Brakefield PM, Beldade P: Conserved developmental processes and the formation of evolutionary novelties: examples from butterfly wings. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 1549-1555. 10.1098/rstb.2007.2245.
Article
PubMed Central
PubMed
Google Scholar
Beldade P, Brakefield PM, Long AD: Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature. 2002, 415: 315-318. 10.1038/415315a.
Article
CAS
PubMed
Google Scholar
Allen CE, Beldade P, Zwaan BJ, Brakefield PM: Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evol Biol. 2008, 8: 94-10.1186/1471-2148-8-94.
Article
PubMed Central
PubMed
Google Scholar
Beldade P, French V, Brakefield PM: Developmental and genetic mechanisms for evolutionary diversification of serial repeats: eyespot size in Bicyclus anynana butterflies. J Exp Zool B Mol Dev Evol. 2008, 310: 191-201. 10.1002/jez.b.21173.
Article
PubMed
Google Scholar
Monteiro A: Alternative models for the evolution of eyespots and of serial homology on lepidopteran wings. Bioessays. 2008, 30: 358-366. 10.1002/bies.20733.
Article
PubMed
Google Scholar
Nijhout HF: The development and evolution of butterfly wing patterns. 1991, Washington, DC: Smithsonian Institution Press
Google Scholar
Kodandaramaiah U: Eyespot evolution: phylogenetic insights from Junonia and related butterfly genera (Nymphalidae: Junoniini). Evol Dev. 2009, 11: 489-497. 10.1111/j.1525-142X.2009.00357.x.
Article
PubMed
Google Scholar
Lyytinen A, Brakefield PM, Lindström L, Mappes J: Does predation maintain eyespot plasticity in Bicyclus anynana?. Proc Biol Sci. 2004, 271: 279-283. 10.1098/rspb.2003.2571.
Article
PubMed Central
PubMed
Google Scholar
Vallin A, Jakobsson S, Lind J, Wiklund C: Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits. Proc Biol Sci. 2005, 272: 1203-1207. 10.1098/rspb.2004.3034.
Article
PubMed Central
PubMed
Google Scholar
Olofsson M, Vallin A, Jakobsson S, Wiklund C: Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS One. 2010, 5: e10798-10.1371/journal.pone.0010798.
Article
PubMed Central
PubMed
Google Scholar
Robertson KA, Monteiro A: Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc R Soc B. 2005, 272: 1541-1546. 10.1098/rspb.2005.3142.
Article
PubMed Central
PubMed
Google Scholar
Costanzo K, Monteiro A: The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc R Soc B. 2007, 274: 845-851. 10.1098/rspb.2006.3729.
Article
PubMed Central
PubMed
Google Scholar
Monteiro A, Prudic KL: Multiple approaches to study color pattern evolution in butterflies. Trends Evol Biol. 2010, 2: e2-10.4081/eb.2010.e2.
Article
Google Scholar
Nijhout HF: Pattern formation on Lepidopteran wings: determination of an eyespot. Dev Biol. 1980, 80: 267-274. 10.1016/0012-1606(80)90403-0.
Article
CAS
PubMed
Google Scholar
French V, Brakefield PM: Eyespot development on butterfly wings: the focal signal. Dev Biol. 1995, 168: 112-123. 10.1006/dbio.1995.1065.
Article
CAS
PubMed
Google Scholar
Monteiro A, French V, Smit G, Brakefield PM, Metz JA: Butterfly eyespot patterns: evidence for specification by a morphogen diffusion gradient. Acta Biotheor. 2001, 49: 77-88. 10.1023/A:1010226223287.
Article
CAS
PubMed
Google Scholar
Reed RD, Serfas MS: Butterfly wing pattern evolution is associated with changes in a Notch/Distal-less temporal pattern formation process. Curr Biol. 2004, 14: 1159-1166. 10.1016/j.cub.2004.06.046.
Article
CAS
PubMed
Google Scholar
Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D: Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev Biol. 2006, 6: 52-65. 10.1186/1471-213X-6-52.
Article
PubMed Central
PubMed
Google Scholar
Brakefield PM, Beldade P, Zwaan BJ: The African butterfly Bicyclus anynana: a model for evolutionary genetics and evolutionary developmental biology. Emerging model organisms: a laboratory manual. Edited by: Behringer RR, Johnson AD, Krumlauf RE. 2009, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1:
Google Scholar
Beldade P, Saenko SV, Pul N, Long AD: A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009, 5: e1000366-10.1371/journal.pgen.1000366.
Article
PubMed Central
PubMed
Google Scholar
Monteiro A, Chen B, Scott LS, Vedder L, Prijs JH, Belicha-Villanueva A, Brakefield PM: The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly. BMC Genet. 2007, 8: 22-10.1186/1471-2156-8-22.
Article
PubMed Central
PubMed
Google Scholar
Koch PB, Lorenz U, Brakefield PM, ffrench-Constant RH: Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Dev Genes Evol. 2000, 210: 536-544. 10.1007/s004270000101.
Article
CAS
PubMed
Google Scholar
Monteiro A, Prijs J, Bax M, Hakkaart T, Brakefield PM: Mutants highlight the modular control of butterfly eyespot patterns. Evol Dev. 2003, 5: 180-187. 10.1046/j.1525-142X.2003.03029.x.
Article
PubMed
Google Scholar
Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Monteiro A, French V, Carroll SB: Development, plasticity and evolution of butterfly eyespot patterns. Nature. 1996, 384: 236-242. 10.1038/384236a0.
Article
CAS
PubMed
Google Scholar
Broadie KS, Bate M, Tublitz NJ: Quantitative staging of embryonic development of the tobacco hawk moth Manduca sexta. Roux's Arch Dev Biol. 1991, 199: 327-334. 10.1007/BF01705925.
Article
Google Scholar
Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS: Expression of Engrailed protein in arthropods, annelids, and chordates. Cell. 1989, 58: 955-968. 10.1016/0092-8674(89)90947-1.
Article
CAS
PubMed
Google Scholar
Ingham PW: Segment polarity genes and cell patterning within the Drosophila body segment. Curr Opin Genet Dev. 1991, 1: 261-267. 10.1016/S0959-437X(05)80080-2.
Article
CAS
PubMed
Google Scholar
Siegfried E, Chou TB, Perrimon N: wingless signalling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell. 1992, 71: 1167-1179. 10.1016/S0092-8674(05)80065-0.
Article
CAS
PubMed
Google Scholar
Zeng W, Wharton KA, Mack JA, Wang K, Gadbaw M, Suyama K, Klein PS, Scott MP: naked cuticle encodes an inducible antagonist of Wnt signalling. Nature. 2000, 403: 789-795. 10.1038/35001615.
Article
CAS
PubMed
Google Scholar
Hamada F, Tomoyasu Y, Takatsu Y, Nakamura M, Nagai S, Suzuki A, Fujita F, Shibuya H, Toyoshima K, Ueno N, Akiyama T: Negative regulation of Wingless signalling by D-Axin, a Drosophila homolog of Axin. Science. 1999, 283: 1739-1742. 10.1126/science.283.5408.1739.
Article
CAS
PubMed
Google Scholar
McCartney BM, Dierick HA, Kirkpatrick C, Moline MM, Baas A, Peifer M, Bejsovec A: Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signalling in the embryonic epidermis. J Cell Biol. 1999, 146: 1303-1318. 10.1083/jcb.146.6.1303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kategaya LS, Changkakoty B, Biechele T, Conrad WH, Kaykas A, DasGupta R, Moon RT: Bili inhibits Wnt/beta-catenin signalling by regulating the recruitment of axin to LRP6. PLoS One. 2009, 4: e6129-10.1371/journal.pone.0006129.
Article
PubMed Central
PubMed
Google Scholar
Monteiro A, Brakefield PM, French V: The evolutionary genetics and developmental basis of wing pattern variation in the butterfly Bicyclus anynana. Evolution. 1994, 48: 1147-1157. 10.2307/2410374.
Article
Google Scholar
Monteiro A, Brakefield PM, French V: Butterfly eyespots: the genetics and development of the color rings. Evolution. 1997, 51: 1207-1216. 10.2307/2411050.
Article
Google Scholar
Beldade P, Brakefield PM: Concerted evolution and developmental integration in modular butterfly wing patterns. Evol Dev. 2003, 5: 169-179. 10.1046/j.1525-142X.2003.03025.x.
Article
PubMed
Google Scholar
Brakefield PM, French V: Eyespot development on butterfly wings: the epidermal response to damage. Dev Biol. 1995, 168: 98-111. 10.1006/dbio.1995.1064.
Article
CAS
PubMed
Google Scholar
Werner T, Koshikawa S, Williams TM, Carroll SB: Generation of a novel wing colour pattern by the Wingless morphogen. Nature. 2010, 464: 1143-1148. 10.1038/nature08896.
Article
CAS
PubMed
Google Scholar
Neumann CJ, Cohen SM: Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development. 1997, 124: 871-880.
CAS
PubMed
Google Scholar
Ferguson L, Lee SF, Chamberlain N, Nadeau N, Joron M, Baxter S, Wilkinson P, Papanicolaou A, Kumar S, Kee TJ, Clark R, Davidson C, Glithero R, Beasley H, Vogel H, Ffrench-Constant R, Jiggins C: Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus. Mol Ecol. 2010, 19 (Suppl 1): 240-254. 10.1111/j.1365-294X.2009.04475.x.
Article
PubMed
Google Scholar
The Silkworm Genome Database. [http://silkworm.genomics.org.cn/]
Logan CY, Nusse RA: The Wnt signalling pathway in development and disease. Annu Rev Cell Dev Biol. 2004, 20: 781-810. 10.1146/annurev.cellbio.20.010403.113126.
Article
CAS
PubMed
Google Scholar
van Amerongen R, Nusse R: Towards an integrated view of Wnt signalling in development. Development. 2009, 136: 3205-3214. 10.1242/dev.033910.
Article
CAS
PubMed
Google Scholar
MacDonald BT, Tamai K, He X: Wnt/beta-catenin signalling: components, mechanisms, and diseases. Dev Cell. 2009, 17: 9-26. 10.1016/j.devcel.2009.06.016.
Article
PubMed Central
CAS
PubMed
Google Scholar
DasGupta R, Kaykas A, Moon RT, Perrimon N: Functional genomic analysis of the Wnt-wingless signalling pathway. Science. 2005, 308: 826-833. 10.1126/science.1109374.
Article
CAS
PubMed
Google Scholar
Quijano JC, Stinchfield MJ, Zerlanko B, Gibbens YY, Takaesu NT, Hyman-Walsh C, Wotton D, Newfeld SJ: The Sno oncogene antagonizes Wingless signalling during wing development in Drosophila. PLoS One. 2010, 5: e11619-10.1371/journal.pone.0011619.
Article
PubMed Central
PubMed
Google Scholar
Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ, Angers S, Moon RT: Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signalling. Science. 2007, 316: 1043-1046. 10.1126/science/1141515.
Article
CAS
PubMed
Google Scholar
Peel AD: The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 1539-1547. 10.1098/rstb.2007.2244.
Article
PubMed Central
PubMed
Google Scholar
Damen WG: Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn. 2007, 236: 1379-1391. 10.1002/dvdy.21157.
Article
CAS
PubMed
Google Scholar
Peel AD, Chipman AD, Akam M: Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet. 2005, 6: 905-916. 10.1038/nrg1724.
Article
CAS
PubMed
Google Scholar
Haag ES, True JR: From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution. 2001, 55: 1077-1084.
CAS
PubMed
Google Scholar
Hoekstra HE: Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity. 2006, 97: 222-234. 10.1038/sj.hdy.6800861.
Article
CAS
PubMed
Google Scholar
Beldade P, Koops K, Brakefield PM: Developmental constraints versus flexibility in morphological evolution. Nature. 2002, 416: 844-847. 10.1038/416844a.
Article
CAS
PubMed
Google Scholar
Papa R, Martin A, Reed RD: Genomic hotspots of adaptation in butterfly wing pattern evolution. Curr Opin Genet Dev. 2008, 18: 559-564. 10.1016/j.gde.2008.11.007.
Article
CAS
PubMed
Google Scholar
Panganiban G, Sebring A, Nagy L, Carroll S: The development of crustacean limbs and the evolution of arthropods. Science. 1995, 270: 1363-1366. 10.1126/science.270.5240.1363.
Article
CAS
PubMed
Google Scholar
De Celis JF, Barrio R, Kafatos FC: Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development. 1999, 126: 2653-2662.
CAS
PubMed
Google Scholar