Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73(1):79–118.
CAS
PubMed
Google Scholar
Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996;271(5252):1081–5.
Article
CAS
PubMed
Google Scholar
Vallee BL, Auld DS. Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci U S A. 1993;90(7):2715–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasad AS. Zinc: an overview. Nutrition (Burbank, Los Angeles County, Calif). 1995;11(1 Suppl):93–9.
Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99(8):1515–22.
Article
CAS
PubMed
Google Scholar
Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem. 2011;16(7):1123–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hambidge M. Human zinc deficiency. J Nutr. 2000;130(5S Supp):1344s–9s.
Fosmire GJ. Zinc toxicity. Am J Clin Nutr. 1990;51(2):225–7.
CAS
PubMed
Google Scholar
Chen MD, Song YM, Lin PY. Zinc effects on hyperglycemia and hypoleptinemia in streptozotocin-induced diabetic mice. Horm Metab Res. 2000;32(3):107–9.
Article
CAS
PubMed
Google Scholar
Pearson E. Zinc transport and diabetes risk. Nat Genet. 2014;46(4):323–4.
Article
CAS
PubMed
Google Scholar
Sturniolo GC, Di Leo V, Ferronato A, D’Odorico A, D’Inca R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflamm Bowel Dis. 2001;7(2):94–8.
Article
CAS
PubMed
Google Scholar
Friedlich AL, Lee JY, van Groen T, Cherny RA, Volitakis I, Cole TB, Palmiter RD, Koh JY, Bush AI. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J Neurosci. 2004;24(13):3453–9.
Article
CAS
PubMed
Google Scholar
Lang M, Wang L, Fan Q, Xiao G, Wang X, Zhong Y, Zhou B. Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates abeta pathology in a Drosophila model of Alzheimer’s disease. PLoS Genet. 2012;8(4):e1002683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Wu Z, Cao Y, Lang M, Lu B, Zhou B. Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation. Cell Rep. 2014;8(3):831–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Asp Med. 2013;34(2-3):612–9.
Article
CAS
Google Scholar
Huang L, Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Asp Med. 2013;34(2-3):548–60.
Article
CAS
Google Scholar
Chen P, Bowman AB, Mukhopadhyay S, Aschner M. SLC30A10: A novel manganese transporter. Worm. 2015;4(3):e1042648.
Article
PubMed
PubMed Central
Google Scholar
Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, Liuzzi JP, Cousins RJ, Knutson MD, Mackenzie B. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 2011;301(4):C862–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao G, Wan Z, Fan Q, Tang X, Zhou B. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. eLife. 2014;3:e03191.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Schneider SN, Dragin N, Girijashanker K, Dalton TP, He L, Miller ML, Stringer KF, Soleimani M, Richardson DD, et al. Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol. 2007;292(4):C1523–35.
Article
CAS
PubMed
Google Scholar
Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D. ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem. 2007;282(19):14389–93.
Article
CAS
PubMed
Google Scholar
Dalton T, Fu K, Palmiter RD, Andrews GK. Transgenic mice that overexpress metallothionein-I resist dietary zinc deficiency. J Nutr. 1996;126(4):825–33.
CAS
PubMed
Google Scholar
Andrews GK, Geiser J. Expression of the mouse metallothionein-I and -II genes provides a reproductive advantage during maternal dietary zinc deficiency. J Nutr. 1999;129(9):1643–8.
CAS
PubMed
Google Scholar
Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J. 1993;12(4):1355–62.
CAS
PubMed
PubMed Central
Google Scholar
Palmiter RD. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A. 1994;91(4):1219–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 1994;13(12):2870–5.
CAS
PubMed
PubMed Central
Google Scholar
Kambe T. Molecular architecture and function of ZnT transporters. Curr Top Membr. 2012;69:199–220.
Article
CAS
PubMed
Google Scholar
Lichten LA, Cousins RJ. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009;29:153–76.
Article
PubMed
Google Scholar
Andrews GK, Wang H, Dey SK, Palmiter RD. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis. 2004;40(2):74–81.
Article
CAS
PubMed
Google Scholar
Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 2008;3(11):e3642.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71(1):66–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M, Kamoun R, Moisan JP. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002;31(3):239–40.
Article
PubMed
Google Scholar
Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem. 2003;278(35):33474–81.
Article
CAS
PubMed
Google Scholar
Norgate M, Lee E, Southon A, Farlow A, Batterham P, Camakaris J, Burke R. Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell. 2006;17(1):475–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao G, Fan Q, Wang X, Zhou B. Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A. 2013;110(37):14995–5000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Southon A, Burke R, Camakaris J. What can flies tell us about copper homeostasis? Metallomics. 2013;5(10):1346–56.
Article
CAS
PubMed
Google Scholar
Tang X, Zhou B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 2013;27(1):288–98.
Article
CAS
PubMed
Google Scholar
Bettedi L, Aslam MF, Szular J, Mandilaras K, Missirlis F. Iron depletion in the intestines of Malvolio mutant flies does not occur in the absence of a multicopper oxidase. J Exp Biol. 2011;214(Pt 6):971–8.
Article
CAS
PubMed
Google Scholar
Mandilaras K, Pathmanathan T, Missirlis F. Iron absorption in Drosophila melanogaster. Nutrients. 2013;5(5):1622–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Zhou B. Iron homeostasis in insects: insights from Drosophila studies. IUBMB life. 2013;65(10):863–72.
Article
CAS
PubMed
Google Scholar
Cui Y, Zhao S, Wang X, Zhou B. A novel Drosophila mitochondrial carrier protein acts as a Mg(2+) exporter in fine-tuning mitochondrial Mg(2+) homeostasis. Biochim Biophys Acta. 2016;1863(1):30–9.
Article
CAS
PubMed
Google Scholar
Wang X, Zhou B. Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB life. 2010;62(3):176–82.
Article
CAS
PubMed
Google Scholar
Richards CD, Burke R. A fly’s eye view of zinc homeostasis: Novel insights into the genetic control of zinc metabolism from Drosophila. Arch Biochem Biophys. 2016;611:142–9.
Article
CAS
PubMed
Google Scholar
Xiao G, Zhou B. What can flies tell us about zinc homeostasis? Arch Biochem Biophys. 2016;611:134–41.
Article
CAS
PubMed
Google Scholar
Lye JC, Richards CD, Dechen K, Paterson D, de Jonge MD, Howard DL, Warr CG, Burke R. Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster. J Exp Biol. 2012;215(Pt 18):3254–65.
Article
CAS
PubMed
Google Scholar
Zhang B, Egli D, Georgiev O, Schaffner W. The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol. 2001;21(14):4505–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, Multhaup G, Mettler S, Vardanyan A, Georgiev O, et al. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol. 2006;26(6):2286–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atanesyan L, Gunther V, Celniker SE, Georgiev O, Schaffner W. Characterization of MtnE, the fifth metallothionein member in Drosophila. J Biol Inorg Chem. 2011;16(7):1047–56.
Article
CAS
PubMed
Google Scholar
Lye JC, Richards CD, Dechen K, Warr CG, Burke R. In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes. J Biol Inorg Chem. 2013;18(3):323–32.
Article
CAS
PubMed
Google Scholar
Dechen K, Richards CD, Lye JC, Hwang JE, Burke R. Compartmentalized zinc deficiency and toxicities caused by ZnT and Zip gene over expression result in specific phenotypes in Drosophila. Int J Biochem Cell Biol. 2015;60:23–33.
Article
CAS
PubMed
Google Scholar
Richards CD, Burke R. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues. Biometals. 2015;28(6):967–74.
Article
CAS
PubMed
Google Scholar
Wang X, Wu Y, Zhou B. Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J. 2009;23(8):2650–61.
Article
CAS
PubMed
Google Scholar
Qin Q, Wang X, Zhou B. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation. BMC Biol. 2013;11:101.
Article
PubMed
PubMed Central
Google Scholar
Richards CD, Warr CG, Burke R. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process. Biometals. 2015;69:11–9.
CAS
Google Scholar
Geiser J, De Lisle RC, Andrews GK. The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLoS One. 2013;8(11):e82149.
Article
PubMed
PubMed Central
Google Scholar
Roh HC, Collier S, Deshmukh K, Guthrie J, Robertson JD, Kornfeld K. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet. 2013;9(5):e1003522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dow JA, Maddrell SH, Gortz A, Skaer NJ, Brogan S, Kaiser K. The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. J Exp Biol. 1994;197:421–8.
CAS
PubMed
Google Scholar
Beyenbach KW, Skaer H, Dow JA. The developmental, molecular, and transport biology of Malpighian tubules. Annu Rev Entomol. 2010;55:351–74.
Article
CAS
PubMed
Google Scholar
Naikkhwah W, O’Donnell MJ. Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity. J Exp Biol. 2011;214(Pt 20):3443–54.
Article
CAS
PubMed
Google Scholar
Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, Georgiev O, Schaffner W. Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 2006;34(17):4866–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi T, Kim MS, Lang S, Bose N, Kahn A, Flechner L, Blaschko SD, Zee T, Muteliefu G, Bond N, et al. A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One. 2015;10(5):e0124150.
Article
PubMed
PubMed Central
Google Scholar
FlyAtlas: the Drosophila gene expression atlas. http://flyatlas.org/. Accessed 29 May 2007.
Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem. 2004;279(47):49082–90.
Article
CAS
PubMed
Google Scholar
Methfessel AH, Spencer H. Zinc metabolism in the rat. II. Secretion of zinc into intestine. J Appl Physiol. 1973;34(1):63–7.
CAS
PubMed
Google Scholar