Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017;389:1323–35. https://doi.org/10.1016/S0140-6736(16)32381-9.
Article
PubMed
PubMed Central
Google Scholar
Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution (N Y). 1957;11:398–411. https://doi.org/10.1111/j.1558-5646.1957.tb02911.x.
Article
Google Scholar
Campisi J. Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev. 2005;126:51–8. https://doi.org/10.1016/j.mad.2004.09.024.
Article
CAS
PubMed
Google Scholar
Alic N, Partridge L. Death and dessert: nutrient signalling pathways and ageing. Curr Opin Cell Biol. 2011;23:738–43. https://doi.org/10.1016/j.ceb.2011.07.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science. 2010;328:321–6. https://doi.org/10.1126/science.1172539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4. https://doi.org/10.1038/366461a0.
Article
CAS
PubMed
Google Scholar
Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292:104–6. https://doi.org/10.1126/science.1057991.
Article
CAS
PubMed
Google Scholar
Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–10. https://doi.org/10.1126/science.1057987.
Article
CAS
PubMed
Google Scholar
Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182–7. https://doi.org/10.1038/nature01298.
Article
CAS
PubMed
Google Scholar
Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 2008;22:807–18. https://doi.org/10.1096/fj.07-9261com.
Article
CAS
PubMed
Google Scholar
Slack C, Giannakou ME, Foley A, Goss M, Partridge L. dFOXO-independent effects of reduced insulin-like signaling in Drosophila. Aging Cell. 2011;10:735–48. https://doi.org/10.1111/j.1474-9726.2011.00707.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L. The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell. 2015;162:72–83. https://doi.org/10.1016/j.cell.2015.06.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannakou ME, Goss M, Jünger MA, Hafen E, Leevers SJ, Partridge L. Long-lived Drosophila with over-expressed dFOXO in adult fat body. Science. 2004;305:361. https://doi.org/10.1126/science.1098219.
Article
CAS
PubMed
Google Scholar
Hwangbo DS, Garsham B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429:562–6. https://doi.org/10.1038/nature02549.
Article
CAS
PubMed
Google Scholar
Broer L, Buchman AS, Deelen J, Evans DS, Faul JD, Lunetta KL, et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol A Biol Sci Med Sci. 2015;70:110–8. https://doi.org/10.1093/gerona/glu166.
Article
CAS
PubMed
Google Scholar
Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun. 2019;10:3669. https://doi.org/10.1038/s41467-019-11558-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Partridge L, Gems D, Withers DJ. Sex and death: what is the connection? Cell. 2005;120:461–72. https://doi.org/10.1016/j.cell.2005.01.026.
Article
CAS
PubMed
Google Scholar
Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143:813–25. https://doi.org/10.1016/j.cell.2010.10.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolukbasi E, Khericha M, Regan JC, Ivanov DK, Adcott J, Dyson MC, et al. Intestinal fork head regulates nutrient absorption and promotes longevity. Cell Rep. 2017;21:641–53. https://doi.org/10.1016/j.celrep.2017.09.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, et al. A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance. Mol Syst Biol. 2017;13:939. https://doi.org/10.15252/msb.20177663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kappeler L, De Magalhaes FC, Dupont J, Leneuve P, Cervera P, Périn L, et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol. 2008;6:2144–53. https://doi.org/10.1371/journal.pbio.0060254.
Article
CAS
Google Scholar
Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell. 2010;143:1161–73. https://doi.org/10.1016/j.cell.2010.12.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature. 2011;471:508–13. https://doi.org/10.1038/nature09867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes VM, Chen Z, Rossi AM, Zipfel J, Desplan C. Glia relay differentiation cues to coordinate neuronal development in Drosophila. Science. 2017;357:886–91. https://doi.org/10.1126/science.aan3174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell. 2018;174:982–998.e20. https://doi.org/10.1016/j.cell.2018.05.057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, et al. Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep. 2017;18:557–70. https://doi.org/10.1016/j.celrep.2016.12.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davie K, Janssens J, Koldere D, Pech U, Aibar S, De Waegeneer M, et al. A single-cell catalogue of regulatory states in the ageing Drosophila brain. bioRxiv. 2017:237420. https://doi.org/10.1101/237420.
Goberdhan DCI, Paricio N, Goodman EC, Mlodzik M, Wilson C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 1999;13:3244–58. https://doi.org/10.1101/gad.13.24.3244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng LY, Bailey AP, Leevers SJ, Ragan TJ, Driscoll PC, Gould AP. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in drosophila. Cell. 2011;146:435–47. https://doi.org/10.1016/j.cell.2011.06.040.
Article
CAS
PubMed
Google Scholar
Shi Y, Wang J, Chandarlapaty S, Cross J, Thompson C, Rosen N, et al. PTEN is a protein tyrosine phosphatase for IRS1. Nat Struct Mol Biol. 2014;21:522–7. https://doi.org/10.1038/nsmb.2828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pickering K, Alves-Silva J, Goberdhan D, Millard TH. Par3/Bazooka and phosphoinositides regulate actin protrusion formation during Drosophila dorsal closure and wound healing. Dev. 2013;140:800–9. https://doi.org/10.1242/dev.089557.
Article
CAS
Google Scholar
Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A. 2001;98:12596–601. https://doi.org/10.1073/pnas.221303298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholson L, Singh GK, Osterwalder T, Roman GW, Davis RL, Keshishian H. Spatial and temporal control of gene expression in drosophila using the inducible geneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics. 2008;178:215–34. https://doi.org/10.1534/genetics.107.081968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuno M, Horiuchi J, Yuasa Y, Ofusa K, Miyashita T, Masuda T, et al. Long-term memory formation in drosophila requires training-dependent glial transcription. J Neurosci. 2015;35:5557–65. https://doi.org/10.1523/JNEUROSCI.3865-14.2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki D, Horiuchi J, Ueno K, Ueno T, Saeki S, Matsuno M, et al. Glial dysfunction causes age-related memory impairment in Drosophila. Neuron. 2014;84:753–63. https://doi.org/10.1016/j.neuron.2014.09.039.
Article
CAS
PubMed
Google Scholar
Min KJ, Yamamoto R, Buch S, Pankratz M, Tatar M. Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell. 2008;7:199–206. https://doi.org/10.1111/j.1474-9726.2008.00373.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannakou ME, Goss M, Partridge L. Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell. 2008;7:187–98. https://doi.org/10.1111/j.1474-9726.2007.00362.x.
Article
CAS
PubMed
Google Scholar
Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11:35–46. https://doi.org/10.1016/j.cmet.2009.11.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alic N, Tullet JM, Niccoli T, Broughton S, Hoddinott MP, Slack C, et al. Cell-nonautonomous effects of dFOXO/DAF-16 in aging. Cell Rep. 2014;6:608–16. https://doi.org/10.1016/j.celrep.2014.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freeman MR. Drosophila central nervous system glia. Cold Spring Harb Perspect Biol. 2015;7:a020552. https://doi.org/10.1101/cshperspect.a020552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Awasaki T, Lai SL, Ito K, Lee T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci. 2008;28:13742–53. https://doi.org/10.1523/JNEUROSCI.4844-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doherty J, Logan MA, Taşdemir ÖE, Freeman MR. Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci. 2009;29:4768–81. https://doi.org/10.1523/JNEUROSCI.5951-08.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avet-Rochex A, Kaul AK, Gatt AP, McNeill H, Bateman JM. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain. Development. 2012;139:2763–72. https://doi.org/10.1242/dev.074179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U. The glia of the adult Drosophila nervous system. Glia. 2017;65:606–38. https://doi.org/10.1002/glia.23115.
Article
PubMed
PubMed Central
Google Scholar
Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 2018;22:269–85. https://doi.org/10.1016/j.celrep.2017.12.039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115:E1896–905. https://doi.org/10.1073/pnas.1800165115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frakes AE, Metcalf MG, Tronnes SU, Bar-Ziv R, Durieux J, Gildea HK, et al. Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in C. elegans. Science. 2020;367:436–40. https://doi.org/10.1126/science.aaz6896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron. 2003;38:567–80. https://doi.org/10.1016/S0896-6273(03)00289-7.
Article
CAS
PubMed
Google Scholar
Stork T, Sheehan A, Tasdemir-Yilmaz OE, Freeman MR. Neuron-glia interactions through the heartless fgf receptor signaling pathway mediate morphogenesis of drosophila astrocytes. Neuron. 2014;83:388–403. https://doi.org/10.1016/j.neuron.2014.06.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rival T, Soustelle L, Strambi C, Besson MT, Iché M, Birman S. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol. 2004;14:599–605. https://doi.org/10.1016/j.cub.2004.03.039.
Article
CAS
PubMed
Google Scholar
Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400. https://doi.org/10.1038/nature12776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakim Y, Yaniv SP, Schuldiner O. Astrocytes play a key role in Drosophila mushroom body axon pruning. PLoS One. 2014;9:e86178. https://doi.org/10.1371/journal.pone.0086178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tasdemir-Yilmaz OE, Freeman MR. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 2014;28:20–33. https://doi.org/10.1101/gad.229518.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano R, Iwamura M, Obikawa A, Togane Y, Hara Y, Fukuhara T, et al. Cortex glia clear dead young neurons via Drpr/dCed-6/Shark and Crk/Mbc/dCed-12 signaling pathways in the developing Drosophila optic lobe. Dev Biol. 2019;453:68–85. https://doi.org/10.1016/j.ydbio.2019.05.003.
Article
CAS
PubMed
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7. https://doi.org/10.1038/nature21029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci. 2020:1–6. https://doi.org/10.1038/s41593-020-0624-8.
Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA. Insulin-like signaling promotes glial phagocytic clearance of degenerating axons through regulation of draper. Cell Rep. 2016;16:1838–50. https://doi.org/10.1016/j.celrep.2016.07.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purice MD, Ray A, Münzel EJ, Pope BJ, Park DJ, Speese SD, et al. A novel Drosophila injury model reveals severed axons are cleared through a draper/MMP-1 signaling cascade. Elife. 2017;6:e23611. https://doi.org/10.7554/eLife.23611.
Article
PubMed
PubMed Central
Google Scholar
Kakanj P, Moussian B, Grönke S, Bustos V, Eming SA, Partridge L, et al. Insulin and TOR signal in parallel through FOXO and S6K to promote epithelial wound healing. Nat Commun. 2016;7:12972. https://doi.org/10.1038/ncomms12972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ford D, Hoe N, Landis GN, Tozer K, Luu A, Bhole D, et al. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp Gerontol. 2007;42:483–97. https://doi.org/10.1016/j.exger.2007.01.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee T, Feig L, Montell DJ. Two distinct roles for Ras in a developmentally regulated cell migration. Development. 1996;122:409–18 https://dev.biologists.org/content/122/2/409. Accessed 12 May 2020.
CAS
PubMed
Google Scholar
Piper MDW, Partridge L. Protocols to study aging in drosophila. In: Methods in molecular biology. New York: Springer New York; 2016. p. 291–302. https://doi.org/10.1007/978-1-4939-6371-3_18.
Chapter
Google Scholar
Waithe D, Rennert P, Brostow G, Piper MDW. QuantiFly: robust trainable software for automated Drosophila egg counting. PLoS One. 2015;10:e0127659. https://doi.org/10.1371/journal.pone.0127659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JS, Luo L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc. 2006;1:2110–5. https://doi.org/10.1038/nprot.2006.336.
Article
CAS
PubMed
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. https://doi.org/10.1038/nmeth.2019.
Article
CAS
Google Scholar