Smayda TJ, Reynolds CS. Strategies of marine dinoflagellate survival and some rules of assembly. J Sea Res. 2013;49:95–106.
Article
Google Scholar
Wang D-Z. Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs. 2008;6:349–71.
Article
PubMed
PubMed Central
Google Scholar
Wisecaver JH, Hackett JD. Dinoflagellate genome evolution. Annu Rev Microbiol. 2011;65:369–87.
Article
CAS
PubMed
Google Scholar
Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals Dinoflagellate gene structure. Curr Biol. 2013;23:1399–408.
Article
CAS
PubMed
Google Scholar
Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep. 2016;6:39734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 2020;18:56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science. 2015;350:691–4.
Article
CAS
PubMed
Google Scholar
Liu H, Stephens TG, Gonzalez-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol. 2018;1:95.
Article
PubMed
PubMed Central
Google Scholar
Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics. 2018;19:458.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beedessee G, Hisata K, Roy MC, Van Dolah FM, Satoh N, Shoguchi E. Diversified secondary metabolite biosynthesis gene repertoire revealed in symbiotic dinoflagellates. Sci Rep. 2019;9:1204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kellmann R, Stüken A, Orr RJS, Svendsen HM, Jakobsen KS. Biosynthesis and molecular genetics of Polyketides in marine dinoflagellates. Mar Drugs. 2010;8:1011–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischbach M, Walsh CT, Clardy J. The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A. 2008;105:4601–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JJ, Olea R, Cevasco M, Pochon X, Correia M, Shpigel M, et al. A marine dinoflagellate, Amphidinium eilatiensis n. sp., from the benthos of a Mariculture sedimentation pond in Eilat, Israel. J Eukaryot Microbiol. 2003;50:439–48.
Article
PubMed
Google Scholar
Baig HS, Saifullah SM, Dar A. Occurrence and toxicity of Amphidinium carterae Hulburt in the north Arabian Sea. Harmful Algae. 2006;5:133–40.
Article
CAS
Google Scholar
Gárate-Lizárraga I. Proliferation of Amphidinium carterae (Gymnodiniales: Gymnodiniaceae) in Bahía de La Paz, Gulf of California. CICIMAR Oceánides. 2012;27:37–49.
Google Scholar
Murray SA, Kohli GS, Farrell H, Spiers ZB, Place AR, Doranres-Aranda JJ, et al. A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae. 2015;49:19–28.
Article
PubMed
PubMed Central
Google Scholar
Kobayashi J, Kubota T. Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium. J Nat Prod. 2007;70:451–60.
Article
CAS
PubMed
Google Scholar
Kubota T, Iinuma Y, Kobayashi J. Cloning of polyketide synthase genes from Amphidinolide-producing dinoflagellate Amphidinium sp. Biol Pharm Bull. 2006;29:1314–8.
Article
CAS
PubMed
Google Scholar
Murray SA, Garby T, Hoppenrath M, Neilan BA. Genetic diversity, morphological uniformity and Polyketide production in Dinoflagellates (Amphidinium, Dinoflagellata). PLoS One. 2012;7:e38253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Ho AYT, Hsieh DPH. Production of C2 toxin by Alexandrium tamarense CI01 using different culture methods. J Appl Phycol. 2002;14:461–8.
Article
CAS
Google Scholar
Erdner DL, Anderson DM. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using massively parallel signature sequencing. BMC Genomics. 2006;7:88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falkowski PG, Barber RT, Smetacek V. Production biogeochemical controls and feedbacks on ocean primary biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281:200–7.
Article
CAS
PubMed
Google Scholar
Colinas M, Goossens A. Combinatorial transcriptional control of plant specialized metabolism. Trends Plant Sci. 2018;23:324–36.
Article
CAS
PubMed
Google Scholar
Moustafa A, Evans AN, Kulis DM, Hackett JD, Erdner DL, Anderson DM, Bhattacharya D. Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence. PLoS One. 2010;5:e9688.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bachvaroff TR, Place AR. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS One. 2008;3:e2929.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fedorova L, Fedorov A. Puzzles of the human genome: why do we need our introns? Current Genomics. 2005;6:589–95.
Article
CAS
Google Scholar
Sun H, Chasin LA. Multiple splicing defects in an intronic false exon. Mol Cell Biol. 2000;20:6414–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaper E, Anisimova M. The evolution and function of protein tandem repeats in plants. New Phytol. 2015;206:397–410.
Article
CAS
PubMed
Google Scholar
Lin S, Lanen SGV, Shen B. A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis. Proc Natl Acad Sci U S A. 2009;106:4183–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura H, Asari T, Fujimaki K, Maruyama K, Murai A, Ohizumi Y, Kan Y. Zooxanthellatoxin-B, vasoconstrictive congener of zooxanthellatoxin-a from a symbiotic dinoflagellate Symbiodinium sp. Tetrahedron Lett. 1995;36:7255–8.
Article
CAS
Google Scholar
Fukatsu T, Onodera K, Ohta Y, Oba Y, Nakamura H, Shintani T, et al. Zooxanthellamide D, a polyhydroxy polyene amide from a marine dinoflagellate, and chemotaxonomic perspective of the symbiodinium polyols. J Nat Prod. 2007;70:407–11.
Article
CAS
PubMed
Google Scholar
Kubota T, Sato H, Iwai T, Kobayashi J. Biosynthetic study of Amphidinin a and Amphidinolide P. Chem Pharm Bull. 2016;64:979–81.
Article
CAS
Google Scholar
Van Wagoner RM, Satake M, Wright JL. Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep. 2014;31:1101–37.
Article
PubMed
Google Scholar
Walsh CT, O'Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid Polyketide scaffolds. Angew Chem Int Ed. 2013;52:7098–124.
Article
CAS
Google Scholar
Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep. 2010;27:1048–65.
Article
CAS
PubMed
Google Scholar
Wenzel SC, Muller R. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat Prod Rep. 2007;24:1211–24.
Article
CAS
PubMed
Google Scholar
Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A, Esposito F, et al. De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Sci Rep. 2017;7:11701.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin S, Litaker RW, Sunda WG, Wood M. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol. 2016;52:10–36.
Article
CAS
PubMed
Google Scholar
Liu Z, Koid AE, Terrado R, Campbell V, Caron DA, Heidelberg KB. Changes in gene expression of Prymnesium parvum induced by nitrogen and phosphorus limitation. Front Microbiol. 2015;6:631.
PubMed
PubMed Central
Google Scholar
Han K, Lee H, Anderson DM, Kim B. Paralytic shellfish toxin production by the dinoflagellate Alexandrium pacificum (Chinhae Bay, Korea) in axenic, nutrient-limited chemostat cultures and nutrient-enriched batch cultures. Mar Pollut Bull. 2016;104:34–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ianora A, Boersma M, Cassoti R, Fontana A, Harder J, Hoffmann F, et al. New trends in marine chemical ecology. Estuaries Coast. 2006;29:531–51.
Article
CAS
Google Scholar
Baumgarten S, Bayer T, Aranda M, Liew YJ, Carr A, Micklem G, et al. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics. 2013;14:704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao D, Qiu L, Hou Z, Zhang Q, Wu J, Gao Q, Song L. Computational identification of microRNAs from the expressed sequence tags of toxic dinoflagellate Alexandrium Tamarense. Evol Bioinforma. 2013;9:479–85.
Article
CAS
Google Scholar
Geng H, Sui Z, Zhang S, Du Q, Ren Y, Liu Y, et al. Identification of microRNAs in the toxigenic dinoflagellate Alexandrium catenella by high-throughput Illumina sequencing and bioinformatic analysis. PLoS One. 2015;10:e0138709.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dagenais-Bellefeuille S, Beauchemin, Morse, D miRNAs do not regulate circadian protein synthesis in the dinoflagellate Lingulodinium polyedrum PLoS ONE 2017; 12: e0168817.
Hopwood DA. Cracking the Polyketide code. PLoS Biol. 2004;2:e35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biswas S, Hazra S, Chattopadhyay S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene. 2016;6:82–9.
Article
CAS
Google Scholar
Liu J, Yuan Y, Wang Y, Jiang C, Chen T, Zhu F, et al. Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica. RSC Adv. 2017;7:35426–37.
Article
CAS
Google Scholar
Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nature Rev Genet. 2011;12:715–29.
Article
CAS
PubMed
Google Scholar
Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111:E5593–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staiger D, Brown JW. Alternative splicing at the intersection of biological, development, and stress responses. Plant Cell. 2013;25:3640–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Wang X, Guo L, Xu Q, Zhao S, Li F, et al. Characterization and alternative splicing profiles of lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 2018;59:1765–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo PJ, Hong S-Y, Ryu JY, Jeong E-Y, Kim S-G, Baldwin IT, et al. Targeted inactivation of transcription factors by overexpression of their truncated forms in plants. Plant J. 2012;72:162–72.
Article
CAS
PubMed
Google Scholar
Monroe EA, Johnson JG, Wang Z, Pierce RK, Van Dolah FM. Characterization and expression of nuclear-encoded polyketide synthases in the brevetoxin-producing dinoflagellate Karenia brevis. J Phycol. 2010;46:541–52.
Article
CAS
Google Scholar
Hojo M, Omi A, Hamanaka G, Shindo K, Shimada A, Kondo M, et al. Unexpected link between polyketide synthase and calcium carbonate biomineralization. Zoological Lett. 2015;1:3.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci U S A. 2007;104:4618–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays. 1999;21:932–9.
Article
CAS
PubMed
Google Scholar
Kobe B, Kajaba AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32.
Article
CAS
PubMed
Google Scholar
Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architechture for protein recognition. Protein Sci. 2004;13:1435–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bretschneider T, Zocher G, Unger M, Scherlach K, Stehle T, Hertweck C. A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nat Chem Biol. 2011;8:154–61.
Article
PubMed
CAS
Google Scholar
Weissman KJ. Peering into the black box of fungal polyketide biosynthesis. ChemBioChem. 2010;11:485–8.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–3.
Horiguchi T. Diversity and phylogeny of marine parasitic dinoflagellates. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine protists: diversity and dynamics. Tokyo: Springer Japan; 2015. p. 397–419.
Chapter
Google Scholar
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure forsmall quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010; Available online at http://w.w.w.bioinformatics.babraham.ac.uk/projects/fastqc.
Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera Long mate pair libraries. Bioinformatics. 2014;30:566–8.
Article
CAS
PubMed
Google Scholar
Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.
Article
CAS
PubMed
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1:18.
Article
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
CAS
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Hackl T, Hedrich R, Schultz J, Foerster F. Proovread: large-scale high accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30:3004–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
Slamovits CH, Keeling PJ. Widespread recycling of processed cDNAs in dinoflagellates. Curr Biol. 2008;18:R550–2.
Article
CAS
PubMed
Google Scholar
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–75.
Article
CAS
PubMed
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21:i351–8.
Article
CAS
PubMed
Google Scholar
Smit AFA, Hubley R, Green P. (1996–2010) RepeatMasker Open-3.0. (http://w.w.w.repeatmasker.org).
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2016;32:767–9.
Article
CAS
PubMed
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–44.
Article
CAS
PubMed
Google Scholar
Magrane M, C. UniProt. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford), 2011; bar009.
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baranašić D, Zucko J, Diminic J, Gacesa R, Long PF, Cullum J, et al. Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. J Ind Microbiol Biotechnol. 2014;41:461–7.
Article
PubMed
CAS
Google Scholar
Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One. 2012;7:e34064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999;8:978–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–71.
Article
CAS
PubMed
Google Scholar
Armenteros JJA, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33:3387–95.
Article
CAS
Google Scholar
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.
Article
CAS
PubMed
Google Scholar
Parsons TR. A manual of chemical & biological methods for seawater analysis. New York: Pergamon Press; 1984.
Google Scholar
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for Gene Ontology. 2010; R package version 2.22.0.
Huang D, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.
Article
PubMed
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in drosophila. Genome Biol. 2003;5:R1.
Article
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Sys Biol. 2014;7:539.
Article
Google Scholar
Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–7.
Article
CAS
PubMed
Google Scholar
Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7:1009–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22:2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.
Article
CAS
PubMed
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Beedessee G, Kubota T, Arimoto A, Nishitsuji K, Waller RF, Hisata K, et al. Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. NCBI accession number PRJNA551917. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA551917. 2020.
Beedessee G, Kubota T, Arimoto A, Nishitsuji K, Waller RF, Hisata K, et al. Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. Amphidinium data repository. https://marinegenomics.oist.jp/amphidinium/viewer/download?project_id=83. 2020.