Jarvis JP, Scheinfeldt LB, Soi S, Lambert C, Omberg L, Ferwerda B, Froment A, Bodo JM, Beggs W, Hoffman G, Mezey J, Tishkoff SA. Patterns of ancestry, signatures of natural selection, and genetic association with stature in Western African pygmies. PLoS Genet. 2012;8(4):e1002641. https://doi.org/10.1371/journal.pgen.1002641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turchin MC, Chiang CW, Palmer CD, Sankararaman S, Reich D, Genetic Investigation of ATC, Hirschhorn JN. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat Genet. 2012;44(9):1015–9. https://doi.org/10.1038/ng.2368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye Z, Li Z, Wang Y, Mao Y, Shen M, Zhang Q, Li S, Zhou L, Shou X, Chen J, Song Z, Ma Z, Zhang Z, Li Y, Ye H, Huang C, Wang T, He W, Zhang Y, Xie R, Qiao N, Qiu H, Huang S, Wang M, Shen J, Wen Z, Li W, Liu K, Zhou J, Wang L, Ji J, Wang Y, Chen H, Cheng H, Shi Z, Zhu Y, Geng D, Yao Z, Tang W, Lu B, Pan L, Zhang Y, Bao W, Wu J, Zheng K, Shi Y, Zhao Y. Common variants at 10p12.31, 10q21.1 and 13q12.13 are associated with sporadic pituitary adenoma. Nat Genet. 2015;47(7):793–7. https://doi.org/10.1038/ng.3322.
Article
CAS
PubMed
Google Scholar
Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93(5):779–97. https://doi.org/10.1016/j.ajhg.2013.10.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayran A, Khetchoumian K, Hariri F, Pastinen T, Gauthier Y, Balsalobre A, Drouin J. Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate. Nat Genet. 2018;50(2):259–69. https://doi.org/10.1038/s41588-017-0035-2.
Article
CAS
PubMed
Google Scholar
Mayran A, Sochodolsky K, Khetchoumian K, Harris J, Gauthier Y, Bemmo A, Balsalobre A, Drouin J. Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening. Nat Commun. 2019;10(1):3807. https://doi.org/10.1038/s41467-019-11791-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peel MT, Ho Y, Liebhaber SA. Transcriptome analyses of female Somatotropes and Lactotropes reveal novel regulators of cell identity in the pituitary. Endocrinology. 2018;159(12):3965–80. https://doi.org/10.1210/en.2018-00587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao S, Nordstrom K, Muijs L, Gasparoni G, Tierling S, Krause E, Walter J, Boehm U. Molecular plasticity of male and female murine Gonadotropes revealed by mRNA sequencing. Endocrinology. 2016;157(3):1082–93. https://doi.org/10.1210/en.2015-1836.
Article
CAS
PubMed
Google Scholar
Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160(4):526–34. https://doi.org/10.1001/archinte.160.4.526.
Article
CAS
PubMed
Google Scholar
Persani L, Cangiano B, Bonomi M. The diagnosis and management of central hypothyroidism in 2018. Endocr Connect. 2019;8(2):R44–54. https://doi.org/10.1530/EC-18-0515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Crenshaw EB 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990;347(6293):528–33. https://doi.org/10.1038/347528a0.
Article
CAS
PubMed
Google Scholar
Bodner M, Karin M. A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell. 1987;50(2):267–75. https://doi.org/10.1016/0092-8674(87)90222-4.
Article
CAS
PubMed
Google Scholar
Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, Ridgway EC. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. J Biol Chem. 1997;272(39):24339–47. https://doi.org/10.1074/jbc.272.39.24339.
Article
CAS
PubMed
Google Scholar
Hashimoto K, Zanger K, Hollenberg AN, Cohen LE, Radovick S, Wondisford FE. cAMP response element-binding protein-binding protein mediates thyrotropin-releasing hormone signaling on thyrotropin subunit genes. J Biol Chem. 2000;275(43):33365–72. https://doi.org/10.1074/jbc.M006819200.
Article
CAS
PubMed
Google Scholar
Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell. 1988;55(3):519–29. https://doi.org/10.1016/0092-8674(88)90038-4.
Article
CAS
PubMed
Google Scholar
Wood WM, Dowding JM, Gordon DF, Ridgway EC. An upstream regulator of the glycoprotein hormone alpha-subunit gene mediates pituitary cell type activation and repression by different mechanisms. J Biol Chem. 1999;274(22):15526–32. https://doi.org/10.1074/jbc.274.22.15526.
Article
CAS
PubMed
Google Scholar
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, Daly AZ, Ajmal A, Perez Millan MI, Ozel AB, et al. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev. 2016;37(6):636–75. https://doi.org/10.1210/er.2016-1101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, Hooshmand F, Aggarwal AK, Rosenfeld MG. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell. 1999;97(5):587–98. https://doi.org/10.1016/S0092-8674(00)80770-9.
Article
CAS
PubMed
Google Scholar
Brinkmeier ML, Bando H, Camarano AC, Fujio S, Yoshimoto K, de Souza FSJ, Camper SA. Rathke's cleft-like cysts arise from Isl1 deletion in murine pituitary progenitors. J Clin Invest. 2020; https://doi.org/10.1172/JCI136745.
Castinetti F, Brinkmeier ML, Mortensen AH, Vella KR, Gergics P, Brue T, Hollenberg AN, Gan L, Camper SA. ISL1 is necessary for maximal thyrotrope response to hypothyroidism. Mol Endocrinol. 2015;29(10):1510–21. https://doi.org/10.1210/me.2015-1192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charles MA, Saunders TL, Wood WM, Owens K, Parlow AF, Camper SA, Ridgway EC, Gordon DF. Pituitary-specific Gata2 knockout: effects on gonadotrope and thyrotrope function. Mol Endocrinol. 2006;20(6):1366–77. https://doi.org/10.1210/me.2005-0378.
Article
CAS
PubMed
Google Scholar
Castinetti F, Brinkmeier ML, Gordon DF, Vella KR, Kerr JM, Mortensen AH, Hollenberg A, Brue T, Ridgway EC, Camper SA. PITX2 AND PITX1 regulate thyrotroph function and response to hypothyroidism. Mol Endocrinol. 2011;25(11):1950–60. https://doi.org/10.1210/me.2010-0388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szeto DP, Rodriguez-Esteban C, Ryan AK, O'Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisua-Belmonte JC, Rosenfeld MG. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 1999;13(4):484–94. https://doi.org/10.1101/gad.13.4.484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charles MA, Suh H, Hjalt TA, Drouin J, Camper SA, Gage PJ. PITX genes are required for cell survival and Lhx3 activation. Mol Endocrinol. 2005;19(7):1893–903. https://doi.org/10.1210/me.2005-0052.
Article
CAS
PubMed
Google Scholar
Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'Honore A, Vallette S, Brue T, Figarella-Branger D, Meij B, Drouin J. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Genes Dev. 2012;26(20):2299–310. https://doi.org/10.1101/gad.200436.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development. 1996;122(10):3319–29.
CAS
PubMed
Google Scholar
Lew D, Brady H, Klausing K, Yaginuma K, Theill LE, Stauber C, Karin M, Mellon PL. GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. Genes Dev. 1993;7(4):683–93. https://doi.org/10.1101/gad.7.4.683.
Article
CAS
PubMed
Google Scholar
Aninye IO, Matsumoto S, Sidhaye AR, Wondisford FE. Circadian regulation of Tshb gene expression by rev-Erbalpha (NR1D1) and nuclear corepressor 1 (NCOR1). J Biol Chem. 2014;289(24):17070–7. https://doi.org/10.1074/jbc.M114.569723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen JS, Sharma V, Pugazhenthi U, Sladek C, Wood WM, Haugen BR. A rexinoid antagonist increases the hypothalamic-pituitary-thyroid set point in mice and thyrotrope cells. Mol Cell Endocrinol. 2011;339(1–2):1–6. https://doi.org/10.1016/j.mce.2011.03.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakajima Y, Yamada M, Taguchi R, Shibusawa N, Ozawa A, Tomaru T, Hashimoto K, Saito T, Tsuchiya T, Okada S, Satoh T, Mori M. NR4A1 (Nur77) mediates thyrotropin-releasing hormone-induced stimulation of transcription of the thyrotropin beta gene: analysis of TRH knockout mice. PLoS One. 2012;7(7):e40437. https://doi.org/10.1371/journal.pone.0040437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sizova D, Ho Y, Cooke NE, Liebhaber SA. Research resource: T-antigen transformation of pituitary cells captures three novel cell lines in the Pit-1 lineage. Mol Endocrinol. 2010;24(11):2232–40. https://doi.org/10.1210/me.2010-0235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.
Article
Google Scholar
Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez-Meljem JM, Hahn H, Andoniadou CL, Martinez-Barbera JP. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development. 2017;144(18):3289–302. https://doi.org/10.1242/dev.153387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ericson J, Norlin S, Jessell TM, Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development. 1998;125(6):1005–15.
CAS
PubMed
Google Scholar
Treier M, O'Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang PT, McMahon AP, Rosenfeld MG. Hedgehog signaling is required for pituitary gland development. Development. 2001;128(3):377–86.
CAS
PubMed
Google Scholar
Fletcher PA, Sherman A, Stojilkovic SS. Common and diverse elements of ion channels and receptors underlying electrical activity in endocrine pituitary cells. Mol Cell Endocrinol. 2018;463:23–36. https://doi.org/10.1016/j.mce.2017.06.022.
Article
CAS
PubMed
Google Scholar
Le Tissier P, Fiordelisio Coll T, Mollard P. The processes of anterior pituitary hormone pulse generation. Endocrinology. 2018;159(10):3524–35. https://doi.org/10.1210/en.2018-00508.
Article
CAS
PubMed
Google Scholar
Ando M, Goto M, Hojo M, Kita A, Kitagawa M, Ohtsuka T, Kageyama R, Miyamoto S. The proneural bHLH genes Mash1, Math3 and NeuroD are required for pituitary development. J Mol Endocrinol. 2018;61(3):127–38. https://doi.org/10.1530/JME-18-0090.
Article
CAS
PubMed
Google Scholar
Zhang F, Tanasa B, Merkurjev D, Lin C, Song X, Li W, Tan Y, Liu Z, Zhang J, Ohgi KA, Krones A, Skowronska-Krawczyk D, Rosenfeld MG. Enhancer-bound LDB1 regulates a corticotrope promoter-pausing repression program. Proc Natl Acad Sci U S A. 2015;112(5):1380–5. https://doi.org/10.1073/pnas.1424228112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife. 2017;6 https://doi.org/10.7554/eLife.21856.
Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53. https://doi.org/10.1038/nature04733.
Article
CAS
PubMed
Google Scholar
Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20(9):1123–36. https://doi.org/10.1101/gad.381706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6. https://doi.org/10.1073/pnas.1016071107.
Article
PubMed
PubMed Central
Google Scholar
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8. https://doi.org/10.1038/nmeth.2688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown NS, Smart A, Sharma V, Brinkmeier ML, Greenlee L, Camper SA, Jensen DR, Eckel RH, Krezel W, Chambon P, Haugen BR. Thyroid hormone resistance and increased metabolic rate in the RXR-gamma-deficient mouse. J Clin Invest. 2000;106(1):73–9. https://doi.org/10.1172/JCI9422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung LYM, Camper SA. PROP1-dependent retinoic acid signaling regulates developmental pituitary morphogenesis and hormone expression. Endocrinology. 2020;161(2):1–13.
Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9(3):215–6. https://doi.org/10.1038/nmeth.1906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen RP, Ingraham HA, Treacy MN, Albert VR, Wilson L, Rosenfeld MG. Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Nature. 1990;346(6284):583–6. https://doi.org/10.1038/346583a0.
Article
CAS
PubMed
Google Scholar
DiMattia GE, Rhodes SJ, Krones A, Carriere C, O'Connell S, Kalla K, Arias C, Sawchenko P, Rosenfeld MG. The Pit-1 gene is regulated by distinct early and late pituitary-specific enhancers. Dev Biol. 1997;182(1):180–90. https://doi.org/10.1006/dbio.1996.8472.
Article
CAS
PubMed
Google Scholar
Gaston-Massuet C, McCabe MJ, Scagliotti V, Young RM, Carreno G, Gregory LC, Jayakody SA, Pozzi S, Gualtieri A, Basu B, et al. Transcription factor 7-like 1 is involved in hypothalamo-pituitary axis development in mice and humans. Proc Natl Acad Sci U S A. 2016;113(5):E548–57. https://doi.org/10.1073/pnas.1503346113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castronovo P, Baccarin M, Ricciardello A, Picinelli C, Tomaiuolo P, Cucinotta F, Frittoli M, Lintas C, Sacco R, Persico AM. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: a systematic review. Clin Genet. 2020;97(1):125–37. https://doi.org/10.1111/cge.13537.
Article
CAS
PubMed
Google Scholar
Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, van Bueren KL, Chines PS, Narisu N, Program NCS, et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A. 2013;110(44):17921–6. https://doi.org/10.1073/pnas.1317023110.
Article
PubMed
PubMed Central
Google Scholar
Varshney A, VanRenterghem H, Orchard P, Boyle AP, Stitzel ML, Ucar D, Parker SCJ. Cell specificity of human regulatory annotations and their genetic effects on gene expression. Genetics. 2019;211(2):549–62. https://doi.org/10.1534/genetics.118.301525.
Article
CAS
PubMed
Google Scholar
Iotchkova V, Ritchie GRS, Geihs M, Morganella S, Min JL, Walter K, Timpson NJ, Consortium UK, Dunham I, Birney E, et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat Genet. 2019;51(2):343–53. https://doi.org/10.1038/s41588-018-0322-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9(1):905. https://doi.org/10.1038/s41467-018-03242-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minegishi N, Ohta J, Suwabe N, Nakauchi H, Ishihara H, Hayashi N, Yamamoto M. Alternative promoters regulate transcription of the mouse GATA-2 gene. J Biol Chem. 1998;273(6):3625–34. https://doi.org/10.1074/jbc.273.6.3625.
Article
CAS
PubMed
Google Scholar
Kendall SK, Gordon DF, Birkmeier TS, Petrey D, Sarapura VD, O'Shea KS, Wood WM, Lloyd RV, Ridgway EC, Camper SA. Enhancer-mediated high level expression of mouse pituitary glycoprotein hormone alpha-subunit transgene in thyrotropes, gonadotropes, and developing pituitary gland. Mol Endocrinol. 1994;8(10):1420–33.
CAS
PubMed
Google Scholar
Brinkmeier ML, Gordon DF, Dowding JM, Saunders TL, Kendall SK, Sarapura VD, Wood WM, Ridgway EC, Camper SA. Cell-specific expression of the mouse glycoprotein hormone alpha-subunit gene requires multiple interacting DNA elements in transgenic mice and cultured cells. Mol Endocrinol. 1998;12(5):622–33. https://doi.org/10.1210/mend.12.5.0103.
Article
CAS
PubMed
Google Scholar
Daly AZ, Camper SA. Pituitary Development and Organogenesis: Transcription Factors in Development and Disease. In: Wray S, Blackshaw S, editors. Developmental Neuroendocrinology. Cham: Springer International Publishing; 2020. p. 129–77.
Chapter
Google Scholar
Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev. 1996;10(10):1284–95. https://doi.org/10.1101/gad.10.10.1284.
Article
CAS
PubMed
Google Scholar
Kragesteen BK, Brancati F, Digilio MC, Mundlos S, Spielmann M. H2AFY promoter deletion causes PITX1 endoactivation and Liebenberg syndrome. J Med Genet. 2019;56(4):246–51. https://doi.org/10.1136/jmedgenet-2018-105793.
Article
CAS
PubMed
Google Scholar
Camper SA, Saunders TL, Kendall SK, Keri RA, Seasholtz AF, Gordon DF, Birkmeier TS, Keegan CE, Karolyi IJ, Roller ML, et al. Implementing transgenic and embryonic stem cell technology to study gene expression, cell-cell interactions and gene function. Biol Reprod. 1995;52(2):246–57. https://doi.org/10.1095/biolreprod52.2.246.
Article
CAS
PubMed
Google Scholar
Cheung LYM, George AS, McGee SR, Daly AZ, Brinkmeier ML, Ellsworth BS, Camper SA. Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell types. Endocrinology. 2018;159(12):3910–24. https://doi.org/10.1210/en.2018-00750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fletcher PA, Smiljanic K, Maso Previde R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell type- and sex-dependent Transcriptome profiles of rat anterior pituitary cells. Front Endocrinol (Lausanne). 2019;10:623. https://doi.org/10.3389/fendo.2019.00623.
Article
Google Scholar
Zhang S, Cui Y, Ma X, Yong J, Yan L, Yang M, Ren J, Tang F, Wen L, Qiao J. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat Commun. 2020;11(1):5275. https://doi.org/10.1038/s41467-020-19012-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khetchoumian K, Balsalobre A, Mayran A, Christian H, Chenard V, St-Pierre J, Drouin J. Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2. Nat Commun. 2019;10(1):3960. https://doi.org/10.1038/s41467-019-11894-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gergics P, Christian HC, Choo MS, Ajmal A, Camper SA. Gene expression in mouse thyrotrope adenoma: transcription elongation factor stimulates proliferation. Endocrinology. 2016;157(9):3631–46. https://doi.org/10.1210/en.2016-1183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mollard P, Dufy B, Vacher P, Barker JL, Schlegel W. Thyrotropin-releasing hormone activates a [Ca2+]i-dependent K+ current in GH3 pituitary cells via ins (1,4,5) P3-sensitive and ins (1,4,5) P3-insensitive mechanisms. Biochem J. 1990;268(2):345–52. https://doi.org/10.1042/bj2680345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomic M, Bargi-Souza P, Leiva-Salcedo E, Nunes MT, Stojilkovic SS. Calcium signaling properties of a thyrotroph cell line, mouse TalphaT1 cells. Cell Calcium. 2015;58(6):598–605. https://doi.org/10.1016/j.ceca.2015.09.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tommiska J, Kansakoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, Tang C, Yuan L, Fagerholm R, Kanters JK, et al. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat Commun. 2017;8(1):1289. https://doi.org/10.1038/s41467-017-01429-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science. 1997;278(5344):1809–12. https://doi.org/10.1126/science.278.5344.1809.
Article
CAS
PubMed
Google Scholar
Mortensen AH, Daly AZ, Dudley LA, Camper SA. Pituitary tumors and immortalized cell lines generated by cre-inducible expression of SV40 T-antigen. J Endocr Soc. 2020;4(OR-06-06):A901.
Ait-Lounis A, Baas D, Barras E, Benadiba C, Charollais A, Nlend Nlend R, Liegeois D, Meda P, Durand B, Reith W. Novel function of the ciliogenic transcription factor RFX3 in development of the endocrine pancreas. Diabetes. 2007;56(4):950–9. https://doi.org/10.2337/db06-1187.
Article
CAS
PubMed
Google Scholar
Elkon R, Milon B, Morrison L, Shah M, Vijayakumar S, Racherla M, Leitch CC, Silipino L, Hadi S, Weiss-Gayet M, Barras E, Schmid CD, Ait-Lounis A, Barnes A, Song Y, Eisenman DJ, Eliyahu E, Frolenkov GI, Strome SE, Durand B, Zaghloul NA, Jones SM, Reith W, Hertzano R. RFX transcription factors are essential for hearing in mice. Nat Commun. 2015;6(1):8549. https://doi.org/10.1038/ncomms9549.
Article
CAS
PubMed
Google Scholar
Brinkmeier ML, Davis SW, Carninci P, MacDonald JW, Kawai J, Ghosh D, Hayashizaki Y, Lyons RH, Camper SA. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics. 2009;93(5):449–60. https://doi.org/10.1016/j.ygeno.2008.11.010.
Article
CAS
PubMed
Google Scholar
Herzog W, Sonntag C, Walderich B, Odenthal J, Maischein HM, Hammerschmidt M. Genetic analysis of adenohypophysis formation in zebrafish. Mol Endocrinol. 2004;18(5):1185–95. https://doi.org/10.1210/me.2003-0376.
Article
CAS
PubMed
Google Scholar
Pogoda HM, von der Hardt S, Herzog W, Kramer C, Schwarz H, Hammerschmidt M. The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis. Development. 2006;133(6):1079–89. https://doi.org/10.1242/dev.02296.
Article
CAS
PubMed
Google Scholar
Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–40. https://doi.org/10.1101/gad.224503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory LC, Dattani MT. The molecular basis of congenital hypopituitarism and related disorders. J Clin Endocrinol Metab. 2020;105(6):e2103–e2120.
Cornwell M, Vangala M, Taing L, Herbert Z, Koster J, Li B, Sun H, Li T, Zhang J, Qiu X, et al. VIPER: visualization pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics. 2018;19(1):135. https://doi.org/10.1186/s12859-018-2139-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartley SW, Mullikin JC. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015;16(1):224. https://doi.org/10.1186/s12859-015-0670-5.
Article
PubMed
PubMed Central
Google Scholar
Lee C, Patil S, Sartor MA. RNA-enrich: a cut-off free functional enrichment testing method for RNA-seq with improved detection power. Bioinformatics. 2016;32(7):1100–2. https://doi.org/10.1093/bioinformatics/btv694.
Article
CAS
PubMed
Google Scholar
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21 29 21–9.
Article
PubMed
Google Scholar
Rai V, Quang DX, Erdos MR, Cusanovich DA, Daza RM, Narisu N, Zou LS, Didion JP, Guan Y, Shendure J, Parker SCJ, Collins FS. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol Metab. 2020;32:109–21. https://doi.org/10.1016/j.molmet.2019.12.006.
Article
CAS
PubMed
Google Scholar
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology. 2013;154(2):738–48. https://doi.org/10.1210/en.2012-1790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–31. https://doi.org/10.1101/gr.136184.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orchard P, White JS, Thomas PE, Mychalowych A, Kiseleva A, Hensley J, Allen B, Parker SCJ, Keegan CE. Genome-wide chromatin accessibility and transcriptome profiling show minimal epigenome changes and coordinated transcriptional dysregulation of hedgehog signaling in Danforth's short tail mice. Hum Mol Genet. 2019;28(5):736–50. https://doi.org/10.1093/hmg/ddy378.
Article
CAS
PubMed
Google Scholar
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12. https://doi.org/10.1093/nar/gky1120.
Article
CAS
PubMed
Google Scholar
Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1(1):4. https://doi.org/10.1186/1471-213X-1-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortensen AH, Schade V, Lamonerie T, Camper SA. Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet. 2015;24(4):939–53. https://doi.org/10.1093/hmg/ddu506.
Article
CAS
PubMed
Google Scholar