Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67(1):225–57. https://doi.org/10.1146/annurev.physiol.67.040403.103635.
Article
CAS
PubMed
Google Scholar
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–41. https://doi.org/10.1126/science.1214935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 2008;8(11):889–95. https://doi.org/10.1038/nri2432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soares MP, Teixeira L, Moita LF. Disease tolerance and immunity in host protection against infection. Nat Rev Immunol. 2017;17(2):83–96. https://doi.org/10.1038/nri.2016.136.
Article
CAS
PubMed
Google Scholar
Bajgar A, Dolezal T. Extracellular adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLoS Pathog. 2018;14(4):e1007022. https://doi.org/10.1371/journal.ppat.1007022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, et al. Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. eLife. 2019;8:1974–90.
Article
Google Scholar
Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406. https://doi.org/10.1016/j.it.2017.03.001.
Article
CAS
PubMed
Google Scholar
Palsson-McDermott EM, O’Neill LAJ. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays. 2013;35(11):965–73. https://doi.org/10.1002/bies.201300084.
Article
CAS
PubMed
Google Scholar
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27(1):441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.
Article
CAS
PubMed
Google Scholar
Grondman I, Arts RJW, Koch RM, Leijte GP, Gerretsen J, Bruse N, et al. Endotoxin-induced immunotolerance is associated with loss of monocyte metabolic plasticity and reduction of oxidative burst. J Leukoc Biol. 2019;106(1):JLB.5HI0119-018R.
Article
Google Scholar
Cheng S-C, Scicluna BP, Arts RJW, Gresnigt MS, Lachmandas E, Giamarellos-Bourboulis EJ, Kox M, Manjeri GR, Wagenaars JAL, Cremer OL, Leentjens J, van der Meer AJ, van de Veerdonk FL, Bonten MJ, Schultz MJ, Willems PHGM, Pickkers P, Joosten LAB, van der Poll T, Netea MG. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol. 2016;17(4):406–13. https://doi.org/10.1038/ni.3398.
Article
CAS
PubMed
Google Scholar
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. Insect Biochem Mol Biol. 2019;109:31–42. https://doi.org/10.1016/j.ibmb.2019.04.005.
Article
CAS
PubMed
Google Scholar
Weis S, Carlos AR, Moita MR, Singh S, Blankenhaus B, Cardoso S, et al. Metabolic adaptation establishes disease tolerance to sepsis. Cell. 2017;169:1263–1275.e14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganeshan K, Nikkanen J, Man K, Leong YA, Sogawa Y, Maschek JA, et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell. 2019;177:399–413.e12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merkling SH, Bronkhorst AW, Kramer JM, Overheul GJ, Schenck A, Van Rij RP. The epigenetic regulator G9a mediates tolerance to RNA virus infection in Drosophila. PLoS Pathog. 2015;11(4):e1004692. https://doi.org/10.1371/journal.ppat.1004692.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer JM. Regulation of cell differentiation and function by the euchromatin histone methyltranserfases G9a and GLP. Biochem Cell Biol. 2016;94(1):26–32. https://doi.org/10.1139/bcb-2015-0017.
Article
CAS
PubMed
Google Scholar
Riahi H, Brekelmans C, Foriel S, Merkling SH, Lyons TA, Itskov PM, Kleefstra T, Ribeiro C, van Rij RP, Kramer JM, Schenck A. The histone methyltransferase G9a regulates tolerance to oxidative stress–induced energy consumption. PLoS Biol. 2019;17(3):e2006146. https://doi.org/10.1371/journal.pbio.2006146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang TC, Schaefer U, Mecklenbrauker I, Stienen A, Dewell S, Chen MS, Rioja I, Parravicini V, Prinjha RK, Chandwani R, MacDonald MR, Lee K, Rice CM, Tarakhovsky A. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J Exp Med. 2012;209(4):661–9. https://doi.org/10.1084/jem.20112343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho JC, Abdullah LN, Pang QY, Jha S, Chow EK-H, Yang H, Kato H, Poellinger L, Ueda J, Lee KL. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway. PLoS One. 2017;12(11):e0188051. https://doi.org/10.1371/journal.pone.0188051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casciello F, Al-Ejeh F, Kelly G, Brennan DJ, Ngiow SF, Young A, et al. G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci. 2017;114(27):7077–82. https://doi.org/10.1073/pnas.1618706114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueda J, Ho JC, Lee KL, Kitajima S, Yang H, Sun W, Fukuhara N, Zaiden N, Chan SL, Tachibana M, Shinkai Y, Kato H, Poellinger L. The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol. 2014;34(19):3702–20. https://doi.org/10.1128/MCB.00099-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41(D1):D808–15. https://doi.org/10.1093/nar/gks1094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–97. https://doi.org/10.1016/j.redox.2015.07.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanson MA, Lemaitre B. New insights on Drosophila antimicrobial peptide function in host defense and beyond. Curr Opin Immunol. 2020;62:22–30. https://doi.org/10.1016/j.coi.2019.11.008.
Article
CAS
PubMed
Google Scholar
Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9. https://doi.org/10.1016/j.molmed.2007.09.002.
Article
CAS
PubMed
Google Scholar
Meier R, Franceschini A, Horvath P, Tetard M, Mancini R, von Mering C, Helenius A, Lozach PY. Genome-wide small interfering RNA screens reveal VAMP3 as a novel host factor required for Uukuniemi virus late penetration. J Virol. 2014;88(15):8565–78. https://doi.org/10.1128/JVI.00388-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhat SS, Friedmann KS, Knörck A, Hoxha C, Leidinger P, Backes C, et al. Syntaxin 8 is required for efficient lytic granule trafficking in cytotoxic T lymphocytes. Biochim Biophys Acta. 2016;1863:1653–64.
Article
CAS
PubMed
Google Scholar
Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E. HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell survival and tumor growth. Cell Rep. 2015;10(6):891–9. https://doi.org/10.1016/j.celrep.2015.01.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhengfeng Z, Yang X, Surong Z, Ma X, Kong J. BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia. Stroke. 2007;38:1606–13.
Article
Google Scholar
Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol. 2006;16(20):1977–85. https://doi.org/10.1016/j.cub.2006.08.052.
Article
CAS
PubMed
Google Scholar
Gusarov I, Pani B, Gautier L, Smolentseva O, Eremina S, Shamovsky I, Katkova-Zhukotskaya O, Mironov A, Nudler E. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nat Commun. 2017;8(1):15868. https://doi.org/10.1038/ncomms15868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS, Vissers LELM, Wissink-Lindhout W, Fenckova M, van den Akker WMR, Kasri NN, Nillesen WM, Prescott T, Clark RD, Devriendt K, van Reeuwijk J, de Brouwer APM, Gilissen C, Zhou H, Brunner HG, Veltman JA, Schenck A, van Bokhoven H. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet. 2012;91(1):73–82. https://doi.org/10.1016/j.ajhg.2012.05.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burns J, Manda G. Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, Chain or Chance. Int J Mol Sci. 2017;18(12):2755. https://doi.org/10.3390/ijms18122755.
Article
CAS
PubMed Central
Google Scholar
Shyh-Chang N, Ng H-H. The metabolic programming of stem cells. Genes Dev. 2017;31(4):336–46. https://doi.org/10.1101/gad.293167.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris RA, Lone A, Lim H, Martinez F, Frame AK, Scholl TJ, et al. Aerobic glycolysis is required for spatial memory acquisition but not memory retrieval in mice. Eneuro. 2019;6:ENEURO.0389-18.2019.
Article
PubMed
PubMed Central
Google Scholar
Vermeulen K, Staal WG, Janzing JG, van Bokhoven H, Egger JIM, Kleefstra T. Sleep disturbance as a precursor of severe regression in Kleefstra syndrome suggests a need for firm and rapid pharmacological treatment. Clin Neuropharmacol. 2017;40(4):185–8. https://doi.org/10.1097/WNF.0000000000000226.
Article
PubMed
Google Scholar
Kealy J, Murray C, Griffin EW, Lopez-Rodriguez AB, Healy D, Tortorelli LS, Lowry JP, Watne LO, Cunningham C. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. J Neurosci. 2020;40(29):5681–96. https://doi.org/10.1523/JNEUROSCI.2876-19.2020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, Schäfers M, Kummer MP, Klockgether T, Heneka MT. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation. 2008;5(1):38. https://doi.org/10.1186/1742-2094-5-38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamers L, Kox M, Pickkers P. Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options. Minerva Anestesiol. 2015;81(4):426–39.
CAS
PubMed
Google Scholar
Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, George RA, Svirskas R, Krzywinski M, Schein J, Accardo MC, Damia E, Messina G, Méndez-Lago M, de Pablos B, Demakova OV, Andreyeva EN, Boldyreva LV, Marra M, Carvalho AB, Dimitri P, Villasante A, Zhimulev IF, Rubin GM, Karpen GH, Celniker SE. The release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 2015;25(3):445–58. https://doi.org/10.1101/gr.185579.114.
Article
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43:gkv711.
Article
Google Scholar
Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7. https://doi.org/10.1093/bioinformatics/btm254.
Article
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8. https://doi.org/10.1093/nar/gkz369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinforma Oxf Engl. 2016;32(18):2847–9. https://doi.org/10.1093/bioinformatics/btw313.
Article
CAS
Google Scholar
Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics. 2011;12(1):357. https://doi.org/10.1186/1471-2105-12-357.
Article
PubMed
PubMed Central
Google Scholar
Shen L. GeneOverlap: an R package to test and visualize gene overlaps; 2016.
Google Scholar
Jaccard P. Lois de distribution florale dans la zone alpine. Bull Soc Vaudoise Sci Nat. 1902;38:69.
Google Scholar
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16(1):169. https://doi.org/10.1186/s12859-015-0611-3.
Article
PubMed
PubMed Central
Google Scholar
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18(2):623–32. https://doi.org/10.1021/acs.jproteome.8b00702.
Article
CAS
PubMed
Google Scholar
Riahi H, Kramer JM, Schenck A. Transcriptional profiles (mRNA-seq) of Drosophila G9aDD1 mutants and control during 0, 6 and 12 hours of paraquat oxidative stress exposure. GEO https://identifiers.org/GEO:GSE110240 (2018).
van Rij RP, Merkling SH. Transcriptome of wild-type and G9a mutant upon viral challenge. GEO https://identifiers.org/GEO:GSE56013 (2014).
Fang TC, Tarakhovsky A. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response (WT and G9a deficient MEFs). GEO https://identifiers.org/GEO:GSE24776 (2010).
Ueda J, Ho JC, Lee KL, Shojiro K, Yang H, Sun WD, Fukuhara N, Zaiden N, Chan SL, Tachibana M, Shinkai Y, Kato H, Poellinger L. Role of the hypoxia-inducible histone H3K9 methylation regulating enzymes Jmjd1a and G9a in stem cell self-renewal and tumorigenesis. GEO https://identifiers.org/GEO:GSE35061 (2012).
Ho JC, Ueda J, Pang QY, Kato H, Jha S, Yang H, Poellinger L, Lee KL. Inhibition of the H3K9 methyltransferase epigenetic regulator G9A attenuates oncogenicity but provokes a survival response via activation of the hypoxia pathway. GEO: https://identifiers.org/GEO:GSE89891 (2016).