Swanson LW. What is the brain? Trends in Neurosci. 2000;23:519–27.
Article
CAS
Google Scholar
Nieuwenhuys R, Donkelaar HJ ten, Nicholson C. The central nervous system of vertebrates, Volume 1 / Volume 2 / Volume 3. Springer-Verlag Berlin Heidelberg 1998; 1998.
Puelles L, Rubenstein JLR. A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Frontiers in Neuroanatomy. 2015;9:27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hébert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci. 2008;9:678–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev. 2013;130:95–111.
Article
CAS
PubMed
Google Scholar
Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, Huang SP, et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development. 1997;124:2935–44.
Article
CAS
PubMed
Google Scholar
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Reconstructing the ancestral vertebrate brain. Dev Growth Differ. 2017;59:163–74.
Article
PubMed
Google Scholar
Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. Journal of Comparative Neurology. 2000;424:409–38.
Article
CAS
PubMed
Google Scholar
Briscoe SD, Ragsdale CW. Molecular anatomy of the alligator dorsal telencephalon. J Comp Neurol. 2018;526:1613–46.
Article
PubMed
PubMed Central
Google Scholar
Briscoe SD, Ragsdale CW. Evolution of the chordate telencephalon. Curr Biol. 2019;29:R647–62.
Article
CAS
PubMed
Google Scholar
Holland LZ, Holland LZ. The origin and evolution of chordate nervous systems. Philos Trans R Soc B. 2015;370:20150048.
Article
Google Scholar
Gans C, Northcutt RG. Neural crest and the origin of vertebrates: a new head. Science. 1983;220:268–73.
Article
CAS
PubMed
Google Scholar
Nieuwenhuys R, Puelles L. Towards a new neuromorphology. Berlin: Springer; 2016.
Book
Google Scholar
Nieuwenhuys R. Principles of current vertebrate neuromorphology. Brain, Behav Evol. 2017;90:117–30.
Article
Google Scholar
Albuixech-Crespo B, López-Blanch L, Burguera D, Maeso I, Sánchez-Arrones L, Moreno-Bravo JA, et al. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PloS Biol. 2017;15(4):e2001573.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao C, Lemaire LA, Wang W, Yoon PH, Choi YA, Parsons LR, et al. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature. 2019;571:349–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature. 2006;439:965–8.
Article
CAS
PubMed
Google Scholar
Duggan CD, DeMaria S, Baudhuin A, Stafford D, Ngai J. Foxg1 is required for development of the vertebrate olfactory system. Journal Neurosci. 2008;28:5229–39.
Article
CAS
Google Scholar
Sasakura Y, Mita K, Ogura Y, Horie T. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev, Growth Differ. 2012;54:420–37.
Article
CAS
Google Scholar
Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell. 2010;142:800–9.
Article
CAS
PubMed
Google Scholar
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell. 2003;113:853–65.
Article
CAS
PubMed
Google Scholar
Lemons D, Fritzenwanker JH, Gerhart J, Lowe CJ, McGinnis W. Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev Biol. 2010;344:358–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ. Ancient deuterostome origins of vertebrate brain signalling centres. Nature. 2012;483:289–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nomaksteinsky M, Röttinger E, Dufour HD, Chettouh Z, Lowe CJ, Martindale MQ, et al. Centralization of the deuterostome nervous system predates chordates. Curr Biol. 2009;19:1264–9.
Article
CAS
PubMed
Google Scholar
Lacalli TC, Kelly SJ. The infundibular balance organ in amphioxus larvae and related aspects of cerebral vesicle organization. Acta Zool. 2000;81:37–47.
Article
Google Scholar
Wicht H, Lacalli TC. The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool. 2005;83:122–50.
Article
Google Scholar
Jeong JY, Einhorn Z, Mathur P, Chen L, Lee S, Kawakami K, et al. Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl. Development. 2007;134:127–36.
Article
CAS
PubMed
Google Scholar
Tole S, Hébert J. Patterning and cell type specification in the developing Cns and Pns. I: induction and patterning of the CNS and PNS. 2013;:3–24.
Cocas LA, Georgala PA, Mangin J-M, Clegg JM, Kessaris N, Haydar TF, et al. Pax6 is required at the telencephalic pallial–subpallial boundary for the generation of neuronal diversity in the postnatal limbic system. J Neurosci. 2011;31:5313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nat R, Apostolova G, Dechant G. Telencephalic neurogenesis versus telencephalic differentiation of pluripotent stem cells. In: Wislet-Gendebien S, editor. 2013.
Sugahara F, Pascual-Anaya J, Oisi Y, Kuraku S, Aota S, Adachi N, et al. Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature. 2016;531:97–100.
Article
CAS
PubMed
Google Scholar
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol. 2010;50:98–109.
Article
PubMed
CAS
Google Scholar
Fuccillo M, Rallu M, McMahon AP, Fishell G. Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development. 2004;131:5031–40.
Article
CAS
PubMed
Google Scholar
Moret F, Guilland J, Coudouel S, Rochette L, Vernier P. Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol. 2004;468:135–50.
Article
CAS
PubMed
Google Scholar
Andrews TG, Gattoni G, Busby L, Schwimmer MA, Benito-Gutiérrez È. Hybridization chain reaction for quantitative and multiplex imaging of gene expression in amphioxus embryos and adult tissues. In: Nielsen BS, Jones J, editors. In situ hybridization protocols. Methods in. Springer Nature 2020; 2020. p. 179–194.
Toresson H, Martinez-Barbera JP, Bardsley A, Caubit X, Krauss S. Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Dev Genes Evol. 1998;208:431–9.
Article
CAS
PubMed
Google Scholar
Shimamura K, Rubenstein JL. Inductive interactions direct early regionalization of the mouse forebrain. Development (Cambridge, England). 1997;124:2709–2718.
Rallu M, Corbin JG, Fishell G. Parsing the prosencephalon. Nat Rev Neurosci. 2002;3:943–51.
Article
CAS
PubMed
Google Scholar
Olsson R, Yulis R, Rodríguez EM. The infundibular organ of the lancelet (Branchiostoma lanceolatum, Acrania): an immunocytochemical study. Cell and Tissue Res. 1994;277:107–14.
Article
Google Scholar
Martynoga B, Morrison H, Price DJ, Mason JO. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol. 2005;283:113–27.
Article
CAS
PubMed
Google Scholar
Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, et al. Integration of telencephalic Wnt and Hedgehog signaling center activities by Foxg1. Dev Cell. 2009;16:576–87.
Article
CAS
PubMed
Google Scholar
Roth M, Bonev B, Lindsay J, Lea R, Panagiotaki N, Houart C, et al. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation. Development. 2010;137:1553–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams NA, Holland PWH. An amphioxus Emx homeobox gene reveals duplication during vertebrate evolution. Mol Biol Evol. 2000;17:1520–8.
Article
CAS
PubMed
Google Scholar
Minguillón C, Ferrier DEK, Cebrián C, Garcia-Fernàndez J. Gene duplications in the prototypical cephalochordate amphioxus. Gene. 2002;287:121–8.
Article
PubMed
Google Scholar
Takatori N, Butts T, Candiani S, Pestarino M, Ferrier DEK, Saiga H, et al. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev Genes Evol. 2008;218:579–90.
Article
CAS
PubMed
Google Scholar
Ando H, Kobayashi M, Tsubokawa T, Uyemura K, Furuta T, Okamoto H. Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Dev Biol. 2005;287:456–68.
Article
CAS
PubMed
Google Scholar
Godbole G, Roy A, Shetty AS, Tole S. Novel functions of LHX2 and PAX6 in the developing telencephalon revealed upon combined loss of both genes. Neural Dev. 2017;12:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glardon S, Holland LZ, Gehring WJ, Holland ND. Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development (Cambridge, England). 1998;125:2701–2710.
Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, et al. Pax–Six–Eya–Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol. 2007;306:143–59.
Article
CAS
PubMed
Google Scholar
Vopalensky P, Pergner J, Liegertova M, Benito-Gutiérrez E, Arendt D, Kozmik Z. Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc Natl Acad Sci. 2012;109:15383–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimeld SM. The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol. 1999;209:40–7.
Article
CAS
PubMed
Google Scholar
Shimeld SM, van den Heuvel M, Dawber R, Briscoe J. An amphioxus Gli gene reveals conservation of midline patterning and the evolution of hedgehog signalling diversity in chordates. PLoS ONE. 2007;2:e864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Puelles L, Kuwana E, Puelles E, Rubenstein JLR. Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur J Morphol. 1999;37:139–50.
Article
CAS
PubMed
Google Scholar
Marín O, Rubenstein JLR. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci. 2001;2:780–90.
Article
PubMed
CAS
Google Scholar
Moreno N, González A, Rétaux S. Development and evolution of the subpallium. Semin Cell Dev Biol. 2009;20:735–43.
Article
PubMed
Google Scholar
Holland ND, Holland LZ. Stage- and tissue-specific patterns of cell division in embryonic and larval tissues of amphioxus during normal development. Evol Dev. 2006;8:142–9.
Article
PubMed
Google Scholar
Guillemot F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol. 2005;17:639–47.
Article
CAS
PubMed
Google Scholar
Moret F, Guilland JC, Coudouel S, Rochette L, Vernier P. Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol. 2004;468:135–50.
Article
CAS
PubMed
Google Scholar
Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007;8:427–37.
Article
CAS
PubMed
Google Scholar
Candiani S, Moronti L, Ramoino P, Schubert M, Pestarino M. A neurochemical map of the developing amphioxus nervous system. BMC Neurosci. 2012;13.
Castro A, Becerra M, Manso MJ, Anadón R. Neuronal organization of the brain in the adult amphioxus (Branchiostoma lanceolatum): a study with acetylated tubulin immunohistochemistry. J Comp Neurol. 2015;523:2211–32.
Article
CAS
PubMed
Google Scholar
Meléndez-Ferro M, Pérez-Costas E, Villar-Cheda B, Abalo XM, Rodríguez-Muñoz R, Rodicio MC, et al. Ontogeny of γ-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey. J Comp Neurol. 2002;446:360–76.
Article
PubMed
Google Scholar
Tosches MA, Laurent G. Evolution of neuronal identity in the cerebral cortex. Curr Opi Neurobiol. 2019;56:199–208.
Article
CAS
Google Scholar
Zieger E, Candiani S, Garbarino G, Croce JC, Schubert M. Correction to: Roles of retinoic acid signaling in shaping the neuronal architecture of the developing amphioxus nervous system (Mol Neurobiol, (2018), 55, 6, 5230–5231 (5210-5229), https://doi.org/10.1007/s12035-017-0727-8). Mol Neurobiology. 2018;55:.
Anadón R, Adrio F, Rodriguez-Moldes I. Distribution of neuropeptide Y immunoreactivity in the central and peripheral nervous systems of amphioxus (Branchiostoma lanceolatum pallas). J Comp Neurol. 1998;401:293–307.
Article
PubMed
Google Scholar
Zieger E, Lacalli TC, Pestarino M, Schubert M, Candiani S. The origin of dopaminergic systems in chordate brains: insights from amphioxus. Int J Dev Biol. 2017;61:749–61.
Article
CAS
PubMed
Google Scholar
Kosaka T, Kosaka K. Neuronal organization of the main olfactory bulb revisited. Anat Sci Int. 2016;91:115–27.
Article
PubMed
Google Scholar
Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development. 2003;130:3621–37.
Article
CAS
PubMed
Google Scholar
Lemons D, Fritzenwanker JH, Gerhart J, Lowe CJ, McGinnis W. Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev Biol. 2010;344:358–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zakany J, Duboule D. The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev. 2007;17:359–66.
Article
CAS
PubMed
Google Scholar
Sussel L, Marin O, Kimura S, Rubenstein JL. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development (Cambridge, England). 1999;126:3359–3370.
Holland ND, Panganiban G, Henyey EL, Holland LZ. Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. Development. 1996;2920:2911–20.
Article
Google Scholar
Lacalli TC. Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain, Behav Evol. 2004;64:148–62.
Article
Google Scholar
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates. Gene Expr Patterns. 2019;34:119073.
Article
CAS
PubMed
Google Scholar
Kumamoto T, Hanashima C. Evolutionary conservation and conversion of Foxg1 function in brain development. Development, Growth \&. Differentiation. 2017;59:258–69.
Article
Google Scholar
Dastidar SG, Landrieu PMZ, D’Mello SR. FoxG1 Promotes the survival of postmitotic neurons. J Neurosci. 2011;31:402–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cecchi C, Boncinelli E. Emx homeogenes and mouse brain development. Trends in Neurosci. 2000;23:347–52.
Article
CAS
Google Scholar
Alunni A, Blin M, Deschet K, Bourrat F, Vernier P, Rétaux S. Cloning and developmental expression patterns of Dlx2, Lhx7 and Lhx9 in the medaka fish (Oryzias latipes). Mech Dev. 2004;121:977–83.
Article
CAS
PubMed
Google Scholar
López JM, Morona R, Moreno N, Lozano D, Jiménez S, González A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:139–63.
Article
Google Scholar
Benito-Gutiérrez È, Weber H, Bryant DV, Arendt D. Methods for generating year-round access to amphioxus in the laboratory. PLoS ONE. 2013;8:e71599.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marlétaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature. 2018;564:64–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holland PWH. Wholemount in situ hybridization to amphioxus embryos. In: Sharpe P.T. MI, editor. Molecular Embryology. Methods in Molecular Biology. Humana Press, Totowa, NJ; 1999. p. vol 97.
Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25:1463–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar