Stearns SC. Trade-offs in life-history evolution. Funct Ecol. 1989;3(3):259. https://doi.org/10.2307/2389364.
Article
Google Scholar
Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol. 1996;11(8):317–21. https://doi.org/10.1016/0169-5347(96)10039-2.
Article
CAS
PubMed
Google Scholar
Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88(1):87-98. https://doi.org/10.1034/j.1600-0706.2000.880110.x.
Rauw WM. Immune response from a resource allocation perspective. Front Genet. 2012;3. https://doi.org/10.3389/fgene.2012.00267.
Cooper AL, Horan MA, Little RA, Rothwell NJ. Metabolic and febrile responses to typhoid vaccine in humans: effect of β-adrenergic blockade. J Appl Physiol. 1992;72(6):2322–8. https://doi.org/10.1152/jappl.1992.72.6.2322.
Article
CAS
PubMed
Google Scholar
French SS, Johnston GIH, Moore MC. Immune activity suppresses reproduction in food-limited female tree lizards Urosaurus ornatus. Funct Ecol. 2007;21(6):1115–22. https://doi.org/10.1111/j.1365-2435.2007.01311.x.
Article
Google Scholar
Coustau C, Chevillon C, Ffrench-Constant R. Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol. 2000;15(9):378–83. https://doi.org/10.1016/S0169-5347(00)01929-7.
Article
CAS
PubMed
Google Scholar
Rigby MC, Hechinger RF, Stevens L. Why should parasite resistance be costly? Trends in Parasitology. 2002;18(3):116–20. https://doi.org/10.1016/S1471-4922(01)02203-6.
Article
PubMed
Google Scholar
Sandland GJ, Minchella DJ. Costs of immune defense: an enigma wrapped in an environmental cloak? Trends Parasitol. 2003;19(12):571–4. https://doi.org/10.1016/j.pt.2003.10.006.
Article
PubMed
Google Scholar
Reznick D, Nunney L, Tessier A. Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol. 2000;15(10):421–5. https://doi.org/10.1016/S0169-5347(00)01941-8.
Article
CAS
PubMed
Google Scholar
Miller LH. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc Natl Acad Sci U S A. 1994;91(7):2415–9. https://doi.org/10.1073/pnas.91.7.2415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3(6):920–40. https://doi.org/10.3390/v3060920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49. https://doi.org/10.1038/nri3581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritsch SD, Weichhart T. Effects of interferons and viruses on metabolism. Front Immunol. 2016;7:630.
Article
Google Scholar
Zhang Y, Timmerhaus G, Anttila K, Mauduit F, Jørgensen SM, Kristensen T, et al. Domestication compromises athleticism and respiratory plasticity in response to aerobic exercise training in Atlantic salmon (Salmo salar). Aquaculture. 2016;463:79–88. https://doi.org/10.1016/j.aquaculture.2016.05.015.
Article
Google Scholar
Williams TD, Christians JK, Aiken JJ, Evanson M. Enhanced immune function does not depress reproductive output. Proc R Soc B Biol Sci. 1999;266(1420):753–7. https://doi.org/10.1098/rspb.1999.0701.
Article
Google Scholar
Meylan S, Richard M, Bauer S, Haussy C, Miles D. Costs of mounting an immune response during pregnancy in a lizard. Physiol Biochem Zool. 2013;86(1):127–36. https://doi.org/10.1086/668637.
Article
CAS
PubMed
Google Scholar
Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci U S A. 2017;114(22):E4324–33. https://doi.org/10.1073/pnas.1701670114.
Article
CAS
PubMed
PubMed Central
Google Scholar
McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338(3):171–9. https://doi.org/10.1056/NEJM199801153380307.
Article
CAS
PubMed
Google Scholar
Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. J Am Med Assoc. 2007;298(14):1685–7. https://doi.org/10.1001/jama.298.14.1685.
Article
CAS
Google Scholar
Garver KA, Johnson SC, Polinski MP, Bradshaw JC, Marty GD, Snyman HN, et al. Piscine orthoreovirus from western North America is transmissible to Atlantic salmon and Sockeye salmon but fails to cause Heart and Skeletal Muscle Inflammation. Plos One. 2016;11(1):e0146229. https://doi.org/10.1371/journal.pone.0146229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polinski MP, Bradshaw JC, Inkpen SM, Richard J, Fritsvold C, Poppe TT, et al. De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection. BMC Genomics. 2016;17(1):848. https://doi.org/10.1186/s12864-016-3196-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polinski MP, Marty GD, Snyman HN, Garver KA. Piscine othoreovirus demonstrates high infectivity but low virulence in Atlantic salmon of Pacific Canada. Sci Rep. 2019;9(1):3297. https://doi.org/10.1038/s41598-019-40025-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Cicco E, Ferguson HW, Kaukinen KH, Schulze AD, Li S, Tabata A, et al. The same strain of Piscine orthoreovirus (PRV-1) is involved in the development of different, but related, diseases in Atlantic and Pacific Salmon in British Columbia. FACETS. 2018;3(1):599–641. https://doi.org/10.1139/facets-2018-0008.
Article
CAS
Google Scholar
Dixon P, Paley R, Alegria-Moran R, Oidtmann B. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review. Vet Res. 2016;47(1):63. https://doi.org/10.1186/s13567-016-0341-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yong CY, Ong HK, Tang HC, Yeap SK, Omar AR, Ho KL, et al. Infectious hematopoietic necrosis virus: advances in diagnosis and vaccine development. PeerJ. 2019;2019:e7151. https://doi.org/10.7717/peerj.7151.
Article
Google Scholar
Polinski MP, Bradshaw JC, Rise ML, Johnson SC, Garver KA. Sockeye salmon demonstrate robust yet distinct transcriptomic kidney responses to rhabdovirus (IHNV) exposure and infection. Fish Shellfish Immunol. 2019;94:525–38. https://doi.org/10.1016/j.fsi.2019.09.042.
Article
CAS
PubMed
Google Scholar
Zhang Y, Polinski MP, Morrison PR, Brauner CJ, Farrell AAP, Garver KA. High-load reovirus infections do not imply physiological impairment in salmon. Front Physiol. 2019;10:114. https://doi.org/10.3389/fphys.2019.00114.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Claireaux G, Takle H, Jørgensen SM, Farrell AP. A three-phase excess post-exercise oxygen consumption in Atlantic salmon Salmo salar and its response to exercise training. J Fish Biol. 2018;92(5):1385–403. https://doi.org/10.1111/jfb.13593.
Article
CAS
PubMed
Google Scholar
Zhang Y, Healy TM, Vandersteen W, Schulte PM, Farrell AP. A rainbow trout Oncorhynchus mykiss strain with higher aerobic scope in normoxia also has superior tolerance of hypoxia. J Fish Biol. 2018;92(2):487–503. https://doi.org/10.1111/jfb.13530.
Article
CAS
PubMed
Google Scholar
Polinski MP, Vendramin N, Cuenca A, Garver KA. Piscine orthoreovirus: biology and distribution in farmed and wild fish. J Fish Dis. 2020;43(11):1331–52. https://doi.org/10.1111/jfd.13228.
Article
PubMed
Google Scholar
Müller A, Sutherland BJG, Koop BF, Johnson SC, Garver KA. Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence on brain transcriptome and subsequent response to the viral mimic poly (I: C). BMC Genomics. 2015;16(1):634. https://doi.org/10.1186/s12864-015-1759-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long A, Garver KA, Jones SRMM. Synergistic osmoregulatory dysfunction during salmon lice (Lepeophtheirus salmonis) and infectious hematopoietic necrosis virus co-infection in sockeye salmon (Oncorhynchus nerka) smolts. J Fish Dis. 2019;42(6):869–82. https://doi.org/10.1111/jfd.12989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol. 2004;17(5):447–62. https://doi.org/10.1016/j.fsi.2004.04.017.
Article
CAS
PubMed
Google Scholar
Milligan CL. Metabolic recovery from exhaustive exercise in rainbow trout. Comp Biochem Physiol Part A Physiol. 1996;113(1):51-60. https://doi.org/10.1016/0300-9629(95)02060-8.
Børsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33(14):1037–60. https://doi.org/10.2165/00007256-200333140-00002.
Article
PubMed
Google Scholar
Overturf K, LaPatra S, Towner R, Campbell N, Narum S. Relationships between growth and disease resistance in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis. 2010;33(4):321–9. https://doi.org/10.1111/j.1365-2761.2009.01124.x.
Article
CAS
PubMed
Google Scholar
Webster LT. Inheritance of resistance of mice to enteric bacterial and neurotropic virus infections. J Exp Med. 1937;65(2):261–86. https://doi.org/10.1084/jem.65.2.261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiens GD, Palti Y, Leeds TD. Three generations of selective breeding improved rainbow trout (Oncorhynchus mykiss) disease resistance against natural challenge with Flavobacterium psychrophilum during early life-stage rearing. Aquaculture. 2018;497:414–21. https://doi.org/10.1016/j.aquaculture.2018.07.064.
Article
Google Scholar
Reid D, Armstrong JD, Metcalfe NB. Estimated standard metabolic rate interacts with territory quality and density to determine the growth rates of juvenile Atlantic salmon. Funct Ecol. 2011;25(6):1360–7. https://doi.org/10.1111/j.1365-2435.2011.01894.x.
Article
Google Scholar
Reid D, Armstrong JD, Metcalfe NB. The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent. J Anim Ecol. 2012;81(4):868–75. https://doi.org/10.1111/j.1365-2656.2012.01969.x.
Article
PubMed
Google Scholar
Burton T, Killen SS, Armstrong JD, Metcalfe NB. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc R Soc B Biol Sci. 2011;278(1724):3465–73. https://doi.org/10.1098/rspb.2011.1778.
Article
CAS
Google Scholar
Amend DF, Nelson JR. Variation in the susceptibility of sockeye salmon Oncorhynchus nerka to infectious haemopoietic necrosis virus. J Fish Biol. 1977;11(6):567–73. https://doi.org/10.1111/j.1095-8649.1977.tb05713.x.
Article
Google Scholar
Purcell MK, Lapatra SE, Woodson JC, Kurath G, Winton JR. Early viral replication and induced or constitutive immunity in rainbow trout families with differential resistance to Infectious hematopoietic necrosis virus (IHNV). Fish Shellfish Immunol. 2010;28(1):98–105. https://doi.org/10.1016/j.fsi.2009.10.005.
Article
CAS
PubMed
Google Scholar
Reyes-López FE, Romeo JS, Vallejos-Vidal E, Reyes-Cerpa S, Sandino AM, Tort L, et al. Differential immune gene expression profiles in susceptible and resistant full-sibling families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis virus (IPNV). Dev Comp Immunol. 2015;53(1):210–21. https://doi.org/10.1016/j.dci.2015.06.017.
Article
CAS
PubMed
Google Scholar
Robledo D, Taggart JB, Ireland JH, McAndrew BJ, Starkey WG, Haley CS, et al. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with infectious pancreatic necrosis virus reveals a marked contrast in immune response. BMC Genomics. 2016;17(1):279. https://doi.org/10.1186/s12864-016-2600-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aller S, Scott A, Sarkar-Tyson M, Soyer OS. Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against Chikungunya, dengue and Zika viruses. J R Soc Interface. 2018;15(146):20180125. https://doi.org/10.1098/rsif.2018.0125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brudeseth BE, Castric J, Evensen Ø. Studies on pathogenesis following single and double infection with viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss); 2002.
Book
Google Scholar
Secombes CJ, Zou J. Evolution of interferons and interferon receptors. Front Immunol. 2017;8:209. https://doi.org/10.3389/fimmu.2017.00209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller U, Steinhoff U, Reis LFL, Hemmi S, Pavlovic J, Zinkernagel RM, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264(5167):1918–21. https://doi.org/10.1126/science.8009221.
Article
PubMed
Google Scholar
Ooi EL, Verjan N, Haraguchi I, Oshima T, Kondo H, Hirono I, et al. Innate immunomodulation with recombinant interferon-α enhances resistance of rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus. Dev Comp Immunol. 2008;32(10):1211–20. https://doi.org/10.1016/j.dci.2008.03.010.
Article
CAS
PubMed
Google Scholar
Miller KM, Günther OP, Li S, Kaukinen KH, Ming TJ. Molecular indices of viral disease development in wild migrating salmon. Conserv Physiol. 2017;5(1). https://doi.org/10.1093/conphys/cox036.
Mordecai GJ, Miller KM, Di Cicco E, Schulze AD, Kaukinen KH, Ming TJ, et al. Endangered wild salmon infected by newly discovered viruses. Elife. 2019;8. https://doi.org/10.7554/eLife.47615.
Mordecai GJ, Di Cicco E, Günther OP, Schulze AD, Kaukinen KH, Li S, et al. Discovery and surveillance of viruses from salmon in British Columbia using viral immune-response biomarkers, metatranscriptomics and high-throughput RT-PCR. Virus Evol. 2020;7(1). https://doi.org/10.1093/ve/veaa069.
Cooper AL, Brouwer S, Turnbull A V., Luheshi GN, Hopkins SJ, Kunkel SL, et al. Tumor necrosis factor-α and fever after peripheral inflammation in the rat. Am J Physiol 1994;267 6 36-6.
Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosomatic Med. 2014;76(3):181–9. https://doi.org/10.1097/PSY.0000000000000049.
Article
Google Scholar
Liu YZ, Wang YX, Jiang CL. Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci. 2017;11. https://doi.org/10.3389/fnhum.2017.00316.
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13. https://doi.org/10.1016/j.mce.2010.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louboutin L, Cabon J, Vigouroux E, Morin T, Danion M. Comparative analysis of the course of infection and the immune response in rainbow trout (Oncorhynchus mykiss) infected with the 5 genotypes of infectious hematopoietic necrosis virus. Virology. 2021;552:20–31. https://doi.org/10.1016/j.virol.2020.09.003.
Article
CAS
PubMed
Google Scholar
Wessel Ø, Braaen S, Alarcon M, Haatveit H, Roos N, Markussen T, et al. Infection with purified Piscine orthoreovirus demonstrates a causal relationship with heart and skeletal muscle inflammation in Atlantic salmon. Plos One. 2017;12(8):e0183781. https://doi.org/10.1371/journal.pone.0183781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garver KA, Mahony AAM, Stucchi D, Richard J, Van Woensel C, Foreman M. Estimation of parameters influencing waterborne transmission of infectious hematopoietic necrosis virus (IHNV) in Atlantic salmon (Salmo salar). Plos One. 2013;8(12):e82296. https://doi.org/10.1371/journal.pone.0082296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Mauduit F, Farrell AP, Chabot D, Ollivier H, Rio-Cabello A, et al. Exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed oil has a chronic residual effect on hypoxia tolerance but not aerobic scope. Aquat Toxicol. 2017;191:95–104. https://doi.org/10.1016/j.aquatox.2017.07.020.
Article
CAS
PubMed
Google Scholar
Chabot D, Steffensen JF, Farrell AP. The determination of standard metabolic rate in fishes. J Fish Biol. 2016;88(1):81–121. https://doi.org/10.1111/jfb.12845.
Article
CAS
PubMed
Google Scholar
Garver KA, Marty GD, Cockburn SN, Richard J, Hawley LM, Müller A, et al. Piscine reovirus, but not jaundice syndrome, was transmissible to Chinook salmon, Oncorhynchus tshawytscha (Walbaum), sockeye salmon, Oncorhynchus nerka (Walbaum), and Atlantic salmon, Salmo salar L. J Fish Dis. 2015;39(2):117–28. https://doi.org/10.1111/jfd.12329.
Article
CAS
PubMed
Google Scholar
Marty GD, Morrison DB, Bidulka J, Joseph T, Siah A. Piscine reovirus in wild and farmed salmonids in British Columbia, Canada: 1974–2013. J Fish Dis. 2015;38(8):713–28. https://doi.org/10.1111/jfd.12285.
Article
CAS
PubMed
Google Scholar
Purcell MK, Thompson RL, Garver KA, Hawley LM, Batts WN, Sprague L, et al. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV). Dis Aquat Organ. 2013;106(2):103–15. https://doi.org/10.3354/dao02644.
Article
CAS
PubMed
Google Scholar
Mayr S, Erdfelder E, Buchner A, Faul F. A short tutorial of GPower. Tutor Quant Methods Psychol. 2007;3:51–9. https://doi.org/10.20982/tqmp.03.2.p051.
Article
Google Scholar