Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989;337(6205):331–7. https://doi.org/10.1038/337331a0.
Article
CAS
PubMed
Google Scholar
Blackburn EH, Collins K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. 2011;3(5). https://doi.org/10.1101/cshperspect.a003558.
Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6(6):584–93. https://doi.org/10.1158/2159-8290.CD-16-0062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277(5328):955–9. https://doi.org/10.1126/science.277.5328.955.
Article
CAS
PubMed
Google Scholar
Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics. 2012;191(4):1073–105. https://doi.org/10.1534/genetics.111.137851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taggart AK, Teng SC, Zakian VA. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science. 2002;297(5583):1023–6. https://doi.org/10.1126/science.1074968.
Article
CAS
PubMed
Google Scholar
Fisher TS, Taggart AK, Zakian VA. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol. 2004;11(12):1198–205. https://doi.org/10.1038/nsmb854.
Article
CAS
PubMed
Google Scholar
Gallardo F, Olivier C, Dandjinou AT, Wellinger RJ, Chartrand P. TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J. 2008;27(5):748–57. https://doi.org/10.1038/emboj.2008.21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuzon CT, Wu Y, Chan A, Zakian VA. The Saccharomyces cerevisiae telomerase subunit Est3 binds telomeres in a cell cycle- and Est1-dependent manner and interacts directly with Est1 in vitro. PLoS Genet. 2011;7(5):e1002060. https://doi.org/10.1371/journal.pgen.1002060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A, Kobor MS, et al. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet. 2014;10(4):e1004288. https://doi.org/10.1371/journal.pgen.1004288.
Article
PubMed
PubMed Central
Google Scholar
Lemieux B, Laterreur N, Perederina A, Noel JF, Dubois ML, Krasilnikov AS, et al. Active yeast telomerase shares subunits with ribonucleoproteins RNase P and RNase MRP. Cell. 2016;165(5):1171–81. https://doi.org/10.1016/j.cell.2016.04.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin KW, McDonald KR, Guise AJ, Chan A, Cristea IM, Zakian VA. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat Commun. 2015;6(1):8290. https://doi.org/10.1038/ncomms9290.
Article
CAS
PubMed
Google Scholar
Garcia PD, Leach RW, Wadsworth GM, Choudhary K, Li H, Aviran S, et al. Stability and nuclear localization of yeast telomerase depend on protein components of RNase P/MRP. Nat Commun. 2020;11(1):2173. https://doi.org/10.1038/s41467-020-15875-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myung K, Chen C, Kolodner RD. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature. 2001;411(6841):1073–6. https://doi.org/10.1038/35082608.
Article
CAS
PubMed
Google Scholar
Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404. https://doi.org/10.1128/MMBR.63.2.349-404.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennaneach V, Putnam CD, Kolodner RD. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae. Mol Microbiol. 2006;59(5):1357–68. https://doi.org/10.1111/j.1365-2958.2006.05026.x.
Article
CAS
PubMed
Google Scholar
Putnam CD, Pennaneach V, Kolodner RD. Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2004;101(36):13262–7. https://doi.org/10.1073/pnas.0405443101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet. 2011;7(7):e1002173. https://doi.org/10.1371/journal.pgen.1002173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature. 1990;346(6287):868–71. https://doi.org/10.1038/346868a0.
Article
CAS
PubMed
Google Scholar
Matmati S, Lambert S, Geli V, Coulon S. Telomerase repairs collapsed replication forks at telomeres. Cell Rep. 2020;30(10):3312–22 e3313. https://doi.org/10.1016/j.celrep.2020.02.065.
Article
CAS
PubMed
Google Scholar
Dave A, Pai CC, Durley SC, Hulme L, Sarkar S, Wee BY, et al. Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks. Nucleic Acids Res. 2020;48(3):1271–84. https://doi.org/10.1093/nar/gkz1109.
Article
CAS
PubMed
Google Scholar
Appanah R, Jones D, Falquet B, Rass U. Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue. Curr Genet. 2020;66(6):1085–92. https://doi.org/10.1007/s00294-020-01106-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Epum EA, Mohan MJ, Ruppe NP, Friedman KL. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition. PLoS Genet. 2020;16(2):e1008608. https://doi.org/10.1371/journal.pgen.1008608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouenzar F, Lalonde M, Laprade H, Morin G, Gallardo F, Tremblay-Belzile S, et al. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage. J Cell Biol. 2017;216(8):2355–71. https://doi.org/10.1083/jcb.201610071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obodo UC, Epum EA, Platts MH, Seloff J, Dahlson NA, Velkovsky SM, et al. Endogenous hot spots of de novo telomere addition in the yeast genome contain proximal enhancers that bind Cdc13. Mol Cell Biol. 2016;36(12):1750–63. https://doi.org/10.1128/MCB.00095-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife. 2017;6. https://doi.org/10.7554/eLife.23783.
Schmidt JC, Zaug AJ, Cech TR. Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell. 2016;166(5):1188–97 e1189. https://doi.org/10.1016/j.cell.2016.07.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boule JB, Vega LR, Zakian VA. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature. 2005;438(7064):57–61. https://doi.org/10.1038/nature04091.
Article
PubMed
Google Scholar
Phillips JA, Chan A, Paeschke K, Zakian VA. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres. PLoS Genet. 2015;11(4):e1005186. https://doi.org/10.1371/journal.pgen.1005186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Durocher D. De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev. 2010;24(5):502–15. https://doi.org/10.1101/gad.1869110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science. 2000;289(5480):771–4. https://doi.org/10.1126/science.289.5480.771.
Article
CAS
PubMed
Google Scholar
Bourns BD, Alexander MK, Smith AM, Zakian VA. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol Cell Biol. 1998;18(9):5600–8. https://doi.org/10.1128/MCB.18.9.5600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baumann P, Cech TR. Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell. 2000;11(10):3265–75. https://doi.org/10.1091/mbc.11.10.3265.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Bruin D, Kantrow SM, Liberatore RA, Zakian VA. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol Cell Biol. 2000;20(21):7991–8000. https://doi.org/10.1128/MCB.20.21.7991-8000.2000.
Article
PubMed
PubMed Central
Google Scholar
Qi H, Zakian VA. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev. 2000;14(14):1777–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greider CW. Regulating telomere length from the inside out: the replication fork model. Genes Dev. 2016;30(13):1483–91. https://doi.org/10.1101/gad.280578.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Xue J, Churikov D, Hass EP, Shi S, Lemon LD, et al. Structural insights into yeast telomerase recruitment to telomeres. Cell. 2018;172(1-2):331–43 e313. https://doi.org/10.1016/j.cell.2017.12.008.
Article
CAS
PubMed
Google Scholar
Margalef P, Kotsantis P, Borel V, Bellelli R, Panier S, Boulton SJ. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell. 2018;172(3):439–53 e414. https://doi.org/10.1016/j.cell.2017.11.047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capra JA, Paeschke K, Singh M, Zakian VA. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol. 2010;6(7):e1000861. https://doi.org/10.1371/journal.pcbi.1000861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev. 2016;30(11):1327–38. https://doi.org/10.1101/gad.280834.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paeschke K, Capra JA, Zakian VA. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 2011;145(5):678–91. https://doi.org/10.1016/j.cell.2011.04.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan A, Boule JB, Zakian VA. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet. 2008;4(10):e1000236. https://doi.org/10.1371/journal.pgen.1000236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics. 1996;144(4):1399–412. https://doi.org/10.1093/genetics/144.4.1399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lundblad V, Szostak JW. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell. 1989;57(4):633–43. https://doi.org/10.1016/0092-8674(89)90132-3.
Article
CAS
PubMed
Google Scholar
Hughes TR, Evans SK, Weilbaecher RG, Lundblad V. The Est3 protein is a subunit of yeast telomerase. Curr Biol. 2000;10(13):809–12. https://doi.org/10.1016/S0960-9822(00)00562-5.
Article
CAS
PubMed
Google Scholar
Evans SK, Lundblad V. Est1 and Cdc13 as comediators of telomerase access. Science. 1999;286(5437):117–20. https://doi.org/10.1126/science.286.5437.117.
Article
CAS
PubMed
Google Scholar
Lin JJ, Zakian VA. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A. 1996;93(24):13760–5. https://doi.org/10.1073/pnas.93.24.13760.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nugent CI, Hughes TR, Lue NF, Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996;274(5285):249–52. https://doi.org/10.1126/science.274.5285.249.
Article
CAS
PubMed
Google Scholar
Jia P, Chai W. The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences. DNA Repair (Amst). 2018;65:20–5. https://doi.org/10.1016/j.dnarep.2018.03.002.
Article
CAS
Google Scholar
Jia P, Chastain M, Zou Y, Her C, Chai W. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells. Nucleic Acids Res. 2017;45(3):1219–32. https://doi.org/10.1093/nar/gkw1170.
Article
CAS
PubMed
Google Scholar
Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K, et al. Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol. 2013;20(10):1199–205. https://doi.org/10.1038/nsmb.2662.
Article
CAS
PubMed
Google Scholar
Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009;276(6):1494–505. https://doi.org/10.1111/j.1742-4658.2009.06908.x.
Article
CAS
PubMed
Google Scholar
Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell. 2017;170(1):72–85 e14. https://doi.org/10.1016/j.cell.2017.06.006.
Article
CAS
PubMed
Google Scholar
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife. 2015;4:e07750.
Article
PubMed Central
Google Scholar
Palladino F, Laroche T, Gilson E, Axelrod A, Pillus L, Gasser SM. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell. 1993;75(3):543–55. https://doi.org/10.1016/0092-8674(93)90388-7.
Article
CAS
PubMed
Google Scholar
Bernstein BE, Tong JK, Schreiber SL. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A. 2000;97(25):13708–13. https://doi.org/10.1073/pnas.250477697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell. 2009;34(6):722–34. https://doi.org/10.1016/j.molcel.2009.05.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat Commun. 2019;10(1):4795.
Article
PubMed
PubMed Central
Google Scholar
Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, Galanello R, et al. Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet. 1994;55(3):505–12.
CAS
PubMed
PubMed Central
Google Scholar
Bianchi A, Negrini S, Shore D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol Cell. 2004;16(1):139–46. https://doi.org/10.1016/j.molcel.2004.09.009.
Article
CAS
PubMed
Google Scholar
Makovets S, Blackburn EH. DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol. 2009;11(11):1383–6. https://doi.org/10.1038/ncb1985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91. https://doi.org/10.1016/S0959-8049(97)00062-2.
Article
CAS
PubMed
Google Scholar
Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A. 1995;92(20):9082–6. https://doi.org/10.1073/pnas.92.20.9082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Z, Wang W, Li F, Songyang Z, Feng X, Xin C, et al. Pan-cancer analysis identifies telomerase-associated signatures and cancer subtypes. Mol Cancer. 2019;18(1):106. https://doi.org/10.1186/s12943-019-1035-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://doi.org/10.1038/s41576-019-0099-1.
Article
CAS
PubMed
Google Scholar
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol. 2020;21(7):384–97. https://doi.org/10.1038/s41580-020-0234-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38(9):426–34. https://doi.org/10.1016/j.tibs.2013.07.001.
Article
CAS
PubMed
Google Scholar
Mah LJ, El-Osta A, Karagiannis TC. GammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86. https://doi.org/10.1038/leu.2010.6.
Article
CAS
PubMed
Google Scholar
Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. 2003;4(7):678–84. https://doi.org/10.1038/sj.embor.embor871.
Article
CAS
PubMed
PubMed Central
Google Scholar
Symington LS, Rothstein R, Lisby M. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics. 2014;198(3):795–835. https://doi.org/10.1534/genetics.114.166140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18(3):175–86. https://doi.org/10.1038/nrm.2016.171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davoli T, de Lange T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell. 2012;21(6):765–76. https://doi.org/10.1016/j.ccr.2012.03.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Hagan RC, Chang S, Maser RS, Mohan R, Artandi SE, Chin L, et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell. 2002;2(2):149–55. https://doi.org/10.1016/S1535-6108(02)00094-6.
Article
CAS
PubMed
Google Scholar
Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T. Chromothripsis and kataegis induced by telomere crisis. Cell. 2015;163(7):1641–54. https://doi.org/10.1016/j.cell.2015.11.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31(1):9–18. https://doi.org/10.1093/carcin/bgp268.
Article
CAS
PubMed
Google Scholar
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://doi.org/10.1016/j.cell.2017.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novarina D, Mavrova SN, Janssens GE, Rempel IL, Veenhoff LM, Chang M. Increased genome instability is not accompanied by sensitivity to DNA damaging agents in aged yeast cells. DNA Repair (Amst). 2017;54:1–7. https://doi.org/10.1016/j.dnarep.2017.03.005.
Article
CAS
Google Scholar
Schulz VP, Zakian VA. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell. 1994;76(1):145–55. https://doi.org/10.1016/0092-8674(94)90179-1.
Article
CAS
PubMed
Google Scholar
Li L, Williams P, Ren W, Wang MY, Gao Z, Miao W, et al. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat Chem Biol. 2021;17(2):161–8. https://doi.org/10.1038/s41589-020-00695-1.
Article
CAS
PubMed
Google Scholar
Hou Y, Li F, Zhang R, Li S, Liu H, Qin ZS, et al. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics. 2019;14(9):894–911. https://doi.org/10.1080/15592294.2019.1621140.
Article
PubMed
PubMed Central
Google Scholar
Selvam S, Yu Z, Mao H. Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding. Nucleic Acids Res. 2016;44(1):45–55. https://doi.org/10.1093/nar/gkv1326.
Article
CAS
PubMed
Google Scholar
Zhang ML, Tong XJ, Fu XH, Zhou BO, Wang J, Liao XH, et al. Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat Struct Mol Biol. 2010;17(2):202–9. https://doi.org/10.1038/nsmb.1760.
Article
CAS
PubMed
Google Scholar
Smith JS, Chen Q, Yatsunyk LA, Nicoludis JM, Garcia MS, Kranaster R, et al. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol. 2011;18(4):478–85. https://doi.org/10.1038/nsmb.2033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol. 2005;12(10):847–54. https://doi.org/10.1038/nsmb982.
Article
CAS
PubMed
Google Scholar
Oganesian L, Karlseder J. Telomeric armor: the layers of end protection. J Cell Sci. 2009;122(Pt 22):4013–25. https://doi.org/10.1242/jcs.050567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5(5):e1000475. https://doi.org/10.1371/journal.pgen.1000475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zahler AM, Williamson JR, Cech TR, Prescott DM. Inhibition of telomerase by G-quartet DNA structures. Nature. 1991;350(6320):718–20. https://doi.org/10.1038/350718a0.
Article
CAS
PubMed
Google Scholar
Traczyk A, Liew CW, Gill DJ, Rhodes D. Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1. Nucleic Acids Res. 2020;48(8):4562–71. https://doi.org/10.1093/nar/gkaa171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouladi B, Sabatier L, Miller D, Pottier G, Murnane JP. The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line. Neoplasia. 2000;2(6):540–54. https://doi.org/10.1038/sj.neo.7900107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostiner DR, Nguyen H, Cox VA, Cotter PD. Stabilization of a terminal inversion duplication of 8p by telomere capture from 18q. Cytogenet Genome Res. 2002;98(1):9–12. https://doi.org/10.1159/000068536.
Article
CAS
PubMed
Google Scholar
Fortin F, Beaulieu Bergeron M, Fetni R, Lemieux N. Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities. Cytogenet Genome Res. 2009;125(3):176–85. https://doi.org/10.1159/000230002.
Article
CAS
PubMed
Google Scholar
Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76. https://doi.org/10.1038/nrc3025.
Article
CAS
PubMed
Google Scholar
Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8(1):69. https://doi.org/10.1186/s13073-016-0324-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Tergaonkar V. Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer Res. 2014;74(6):1639–44. https://doi.org/10.1158/0008-5472.CAN-13-3568.
Article
CAS
PubMed
Google Scholar
Rutledge MT, Russo M, Belton JM, Dekker J, Broach JR. The yeast genome undergoes significant topological reorganization in quiescence. Nucleic Acids Res. 2015;43(17):8299–313. https://doi.org/10.1093/nar/gkv723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang TC, Moshir S, Garini Y, Chuang AY, Young IT, Vermolen B, et al. The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol. 2004;2(1):12. https://doi.org/10.1186/1741-7007-2-12.
Article
PubMed
PubMed Central
Google Scholar
Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, et al. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol. 2017;19(9):1071–80. https://doi.org/10.1038/ncb3594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14(10):953–61. https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U.
Article
CAS
PubMed
Google Scholar
Buck MJ, Nobel AB, Lieb JD. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol. 2005;6(11):R97. https://doi.org/10.1186/gb-2005-6-11-r97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belaghzal H, Dekker J, Gibcus JH. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods. 2017;123:56–65. https://doi.org/10.1016/j.ymeth.2017.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P, et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000Res. 2015;4:1310.
Article
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey SS, Baxter J, Juranek SA, Guryev V, Schmitz T, Hofmann A, Heermann DW, Paeschke K. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. NCBI GEO: 2020. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143187. Accessed Jan 2020.