Manley GA. Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci U S A. 2000;97:11736–43.
CAS
PubMed
PubMed Central
Google Scholar
Manley GA. Evolutionary paths to mammalian cochleae. J Assoc Res Otolaryngol. 2012;13:733–43.
PubMed
PubMed Central
Google Scholar
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, et al. Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev. 2013;15:63–79.
PubMed
PubMed Central
Google Scholar
Franchini LF, Elgoyhen B. Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Molecular Phylogenetics and Evolution. 2006;41:622–35.
CAS
PubMed
Google Scholar
Elgoyhen AB, Franchini LF. Prestin and the cholinergic receptor of hair cells: Positivelyselected proteins in mammals. Hearing Research. 2011;273:100–8.
CAS
PubMed
Google Scholar
Pisciottano F, Cinalli AR, Stopiello JM, Castagna VC, Elgoyhen AB, Rubinstein M, et al. Inner Ear Genes Underwent Positive Selection and Adaptation in the Mammalian Lineage. Mol Biol Evol. 2019;36:1653–70.
CAS
PubMed
Google Scholar
Kirwan JD, Bekaert M, Commins JM, Davies KTJ, Rossiter SJ, Teeling EC. A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals. Evol Appl. 2013;6:412–22.
PubMed
PubMed Central
Google Scholar
Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of adaptation. Evolution. 2007;61:995–1016.
PubMed
Google Scholar
Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution. 2008;62:2155–77.
PubMed
PubMed Central
Google Scholar
Prud’homme B, Gompel N, Carroll SB. Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A. 2007;104(Suppl 1):8605–12.
PubMed
PubMed Central
Google Scholar
Ryan AF, Ikeda R, Masuda M. The regulation of gene expression in hair cells. Hear Res. 2015;329:33–40.
CAS
PubMed
PubMed Central
Google Scholar
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134:25–36.
CAS
PubMed
Google Scholar
Braga J, Loubes J-M, Descouens D, Dumoncel J, Thackeray JF, Kahn J-L, et al. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes’ Hearing Evolution. PLOS ONE. 2015;10:e0127780.
CAS
PubMed
PubMed Central
Google Scholar
Manley GA. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears. J Assoc Res Otolaryngol. 2017;18:1–24.
PubMed
Google Scholar
Manley GA, van Dijk P. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Hear Res. 2016;336:53–62.
PubMed
Google Scholar
Zuberbühler K. Combinatorial capacities in primates. Curr Opin Behav Sci. 2018;21:161–9. https://doi.org/10.1016/j.cobeha.2018.03.015.
Van Camp G, Smith RJH. Hereditary Hearing Loss Homepage. https://hereditaryhearingloss.org/. Accessed 2018.
National Library of Medicine. Genetics Home Reference. Nonsyndromic hearing loss. https://medlineplus.gov/genetics/condition/nonsyndromic-hearing-loss/. Accessed 2018.
Ballana E, Ventayol M, Rabionet, R, Gasparini, P, X. E. Connexins and deafness homepage. http://perelman.crg.es/deafness/. Accessed 2018.
Shearer AE, Hildebrand MS, Smith RJH. Hereditary Hearing Loss and Deafness Overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Mirzaa G, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1999.
Google Scholar
Bowl MR, Simon MM, Ingham NJ, Greenaway S, Santos L, Cater H, et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat Commun. 2017;8:886.
PubMed
PubMed Central
Google Scholar
IMPC. International Mouse Phenotyping Consortium. IMPC. 2016. https://www.mousephenotype.org/. Accessed 2018.
Google Scholar
Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537:508–14.
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005;22:2472–9.
CAS
PubMed
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
CAS
PubMed
Google Scholar
Holloway AK, Bruneau BG, Sukonnik T, Rubenstein JL, Pollard KS. Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor. Mol Biol Evol. 2016;33:1008–18.
CAS
PubMed
Google Scholar
Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature. 2004;428:950–5.
CAS
PubMed
Google Scholar
Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci. 2006;26:7022–34.
CAS
PubMed
PubMed Central
Google Scholar
Rogozin IB, Belinky F, Pavlenko V, Shabalina SA, Kristensen DM, Koonin EV. Evolutionary switches between two serine codon sets are driven by selection. Proc Natl Acad Sci U S A. 2016;113:13109–13.
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, dos Reis M. Statistical properties of the branch-site test of positive selection. Mol Biol Evol. 2011;28:1217–28.
CAS
PubMed
Google Scholar
Ganapathy A, Pandey N, Srisailapathy CRS, Jalvi R, Malhotra V, Venkatappa M, et al. Nonsyndromic hearing impairment in India: high allelic heterogeneity among mutations in TMPRSS3, TMC1, USHIC, CDH23 and TMIE. PLoS One. 2014;9:e84773.
PubMed
PubMed Central
Google Scholar
Araya-Secchi R, Neel BL, Sotomayor M. An elastic element in the protocadherin-15 tip link of the inner ear. Nat Commun. 2016;7:13458.
CAS
PubMed
PubMed Central
Google Scholar
Dionne G, Qiu X, Rapp M, Liang X, Zhao B, Peng G, et al. Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Neuron. 2018;99:480–92.e5.
CAS
PubMed
PubMed Central
Google Scholar
Zhao B, Wu Z, Grillet N, Yan L, Xiong W, Harkins-Perry S, et al. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron. 2014;84:954–67.
CAS
PubMed
PubMed Central
Google Scholar
Xiong W, Grillet N, Elledge HM, Wagner TFJ, Zhao B, Johnson KR, et al. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell. 2012;151:1283–95.
CAS
PubMed
PubMed Central
Google Scholar
Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H, et al. Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A. 2014;111:12907–12.
CAS
PubMed
PubMed Central
Google Scholar
Qiu X, Müller U. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci. 2018;12:100.
PubMed
PubMed Central
Google Scholar
Wu Z, Grillet N, Zhao B, Cunningham C, Harkins-Perry S, Coste B, et al. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat Neurosci. 2017;20:24–33.
CAS
PubMed
Google Scholar
Pan B, Akyuz N, Liu X-P, Asai Y, Nist-Lund C, Kurima K, et al. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron. 2018;99:736–53.e6.
CAS
PubMed
PubMed Central
Google Scholar
Fettiplace R. Is TMC1 the Hair Cell Mechanotransducer Channel? Biophys J. 2016;111:3–9.
CAS
PubMed
PubMed Central
Google Scholar
Michalski N, Goutman JD, Auclair SM, Boutet de Monvel J, Tertrais M, Emptoz A, et al. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. Elife. 2017:6. https://doi.org/10.7554/eLife.31013.
Pangršič T, Reisinger E, Moser T. Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci. 2012;35:671–80.
PubMed
Google Scholar
Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, Kolatkar A, Velasco J, et al. Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. Am J Hum Genet. 2009;85:328–37.
CAS
PubMed
PubMed Central
Google Scholar
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.
CAS
PubMed
PubMed Central
Google Scholar
Quam R, Martínez I, Rosa M, Bonmatí A, Lorenzo C, de Ruiter DJ, et al. Early hominin auditory capacities. Sci Adv. 2015;1:e1500355.
PubMed
PubMed Central
Google Scholar
Quam RM, Martínez I, Rosa M, Arsuaga JL. Evolution of Hearing and Language in Fossil Hominins. In: Quam RM, Ramsier MA, Fay RR, Popper AN, editors. Primate Hearing and Communication. Cham: Springer International Publishing; 2017. p. 201–31.
Google Scholar
Conde-Valverde M, Martínez I, Quam RM, Rosa M, Velez AD, Lorenzo C, et al. Neanderthals and Homo sapiens had similar auditory and speech capacities. Nat Ecol Evol. 2021;5:609–15.
PubMed
Google Scholar
Enard W, Przeworski M, Fisher SE, Lai CSL, Wiebe V, Kitano T, et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature. 2002;418:869–72.
CAS
PubMed
Google Scholar
Ptak SE, Enard W, Wiebe V, Hellmann I, Krause J, Lachmann M, et al. Linkage disequilibrium extends across putative selected sites in FOXP2. Mol Biol Evol. 2009;26:2181–4.
CAS
PubMed
Google Scholar
Caporale AL, Gonda CM, Franchini LF. Transcriptional Enhancers in the FOXP2 Locus Underwent Accelerated Evolution in the Human Lineage. Mol Biol Evol. 2019. https://doi.org/10.1093/molbev/msz173.
Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M, Vernes SC, et al. FOXP2 targets show evidence of positive selection in European populations. Am J Hum Genet. 2013;92:696–706.
CAS
PubMed
PubMed Central
Google Scholar
Mozzi A, Forni D, Clerici M, Pozzoli U, Mascheretti S, Guerini FR, et al. The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Sci Rep. 2016;6:22157.
CAS
PubMed
PubMed Central
Google Scholar
Hertzano R, Shalit E, Rzadzinska AK, Dror AA, Song L, Ron U, et al. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells. PLoS Genet. 2008;4:e1000207.
PubMed
PubMed Central
Google Scholar
Roux I, Hosie S, Johnson SL, Bahloul A, Cayet N, Nouaille S, et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum Mol Genet. 2009;18:4615–28.
Sakaguchi H, Tokita J, Naoz M, Bowen-Pope D, Gov NS, Kachar B. Dynamic compartmentalization of protein tyrosine phosphatase receptor Q at the proximal end of stereocilia: Implication of myosin VI-based transport. Cell Motil Cytoskeleton. 2008;65:528–38.
CAS
PubMed
Google Scholar
Collin RWJ, Kalay E, Tariq M, Peters T, van der Zwaag B, Venselaar H, et al. Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. Am J Hum Genet. 2008;82:125–38.
CAS
PubMed
PubMed Central
Google Scholar
Canzi P, Pecci A, Manfrin M, Rebecchi E, Zaninetti C, Bozzi V, et al. Severe to profound deafness may be associated with MYH9-related disease: report of 4 patients. Acta Otorhinolaryngol Ital. 2016;36:415–20.
CAS
PubMed
PubMed Central
Google Scholar
Huebner AK, Maier H, Maul A, Nietzsche S, Herrmann T, Praetorius J, et al. Early Hearing Loss upon Disruption of Slc4a10 in C57BL/6 Mice. J Assoc Res Otolaryngol. 2019;20:233–45.
PubMed
PubMed Central
Google Scholar
Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:e72.
PubMed
PubMed Central
Google Scholar
Arbiza L, Dopazo J, Dopazo H. Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol. 2006;2:e38.
PubMed
PubMed Central
Google Scholar
Gouy A, Excoffier L. Polygenic Patterns of Adaptive Introgression in Modern Humans Are Mainly Shaped by Response to Pathogens. Mol Biol Evol. 2020;37:1420–33.
CAS
PubMed
Google Scholar
Kimura R, Fujimoto A, Tokunaga K, Ohashi J. A practical genome scan for populationspecific strong selective sweeps that have reached fixation. PLoS One. 2007;2:e286.
PubMed
PubMed Central
Google Scholar
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.
CAS
PubMed
PubMed Central
Google Scholar
Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, et al. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003;302:1960–3.
CAS
PubMed
Google Scholar
Tang K, Thornton KR, Stoneking M. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol. 2007;5:e171.
PubMed
PubMed Central
Google Scholar
Bachg AC, Horsthemke M, Skryabin BV, Klasen T, Nagelmann N, Faber C, et al. Phenotypic analysis of Myo10 knockout (Myo10tm2/tm2) mice lacking full-length (motorized) but not brainspecific headless myosin X. Sci Rep. 2019;9:597.
PubMed
PubMed Central
Google Scholar
Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15:1566–75.
CAS
PubMed
PubMed Central
Google Scholar
Pybus M, Dall’Olio GM, Luisi P, Uzkudun M, Carreño-Torres A, Pavlidis P, et al. 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Res. 2014;42(Database issue):D903–9.
CAS
PubMed
Google Scholar
Murga-Moreno J, Coronado-Zamora M, Bodelón A, Barbadilla A, Casillas S. PopHumanScan: the online catalog of human genome adaptation. Nucleic Acids Res. 2019;47:D1080–9.
CAS
PubMed
Google Scholar
Peyrégne S, Boyle MJ, Dannemann M, Prüfer K. Detecting ancient positive selection in humans using extended lineage sorting. Genome Res. 2017;27:1563–72.
PubMed
PubMed Central
Google Scholar
Capra JA, Erwin GD, McKinsey G, Rubenstein JLR, Pollard KS. Many human accelerated regions are developmental enhancers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130025.
PubMed
PubMed Central
Google Scholar
Kostka D, Hubisz MJ, Siepel A, Pollard KS. The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol Biol Evol. 2012;29:1047–57.
CAS
PubMed
Google Scholar
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–8.
CAS
PubMed
PubMed Central
Google Scholar
Mouse ENCODE Consortium, Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, et al. An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol. 2012;13:418.
Google Scholar
Lesurf R, Cotto KC, Wang G, Griffith M, Kasaian K, Jones SJM, et al. ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res. 2016;44:D126–32.
CAS
PubMed
Google Scholar
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database. 2017;2017:028.
Google Scholar
Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer Browser--a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35(Database issue):D88–92.
CAS
PubMed
Google Scholar
Wilkerson BA, Chitsazan AD, VandenBosch LS, Wilken MS, Reh TA, Bermingham-McDonogh O. Open chromatin dynamics in prosensory cells of the embryonic mouse cochlea. Sci Rep. 2019;9:9060.
PubMed
PubMed Central
Google Scholar
Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, et al. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep. 2018;8:17348.
PubMed
PubMed Central
Google Scholar
Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS. Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science. 2006;312:276–9.
CAS
PubMed
Google Scholar
Bessa J, Tena JJ, de la Calle-Mustienes E, Fernández-Miñán A, Naranjo S, Fernández A, et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev Dyn. 2009;238:2409–17.
CAS
PubMed
Google Scholar
Kamm GB, Pisciottano F, Kliger R, Franchini LF. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol. 2013;30:1088–102.
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Leslie EJ, Carlson JC, Beaty TH, Marazita ML, Lidral AC, et al. Identification of common non-coding variants at 1p22 that are functional for non-syndromic orofacial clefting. Nat Commun. 2017;8:14759.
CAS
PubMed
PubMed Central
Google Scholar
Greene CC, McMillan PM, Barker SE, Kurnool P, Lomax MI, Burmeister M, et al. DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am J Hum Genet. 2001;68:254–60.
CAS
PubMed
Google Scholar
Kim TB, Isaacson B, Sivakumaran TA, Starr A, Keats BJB, Lesperance MM. A gene responsible for autosomal dominant auditory neuropathy (AUNA1) maps to 13q14–21. J Med Genet. 2004;41:872–6.
CAS
PubMed
PubMed Central
Google Scholar
Starr A, Isaacson B, Michalewski HJ, Zeng F-G, Kong Y-Y, Beale P, et al. A dominantly inherited progressive deafness affecting distal auditory nerve and hair cells. J Assoc Res Otolaryngol. 2004;5:411–26.
PubMed
PubMed Central
Google Scholar
Higgs HN. Formin proteins: a domain-based approach. Trends Biochem Sci. 2005;30:342–53.
CAS
PubMed
Google Scholar
Schoen CJ, Emery SB, Thorne MC, Ammana HR, Sliwerska E, Arnett J, et al. Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila. Proc Natl Acad Sci U S A. 2010;107:13396–401.
CAS
PubMed
PubMed Central
Google Scholar
Surel C, Guillet M, Lenoir M, Bourien J, Sendin G, Joly W, et al. Remodeling of the Inner Hair Cell Microtubule Meshwork in a Mouse Model of Auditory Neuropathy AUNA1. eNeuro. 2016;3:0295.
Google Scholar
Schoen CJ, Burmeister M, Lesperance MM. Diaphanous homolog 3 (Diap3) overexpression causes progressive hearing loss and inner hair cell defects in a transgenic mouse model of human deafness. PLoS One. 2013;8:e56520.
CAS
PubMed
PubMed Central
Google Scholar
Orvis J, Gottfried B, Kancherla J, Adkins RS, Song Y, Dror AA, et al. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nat Methods. 2021;18:843–4.
CAS
PubMed
Google Scholar
Rudnicki A, Isakov O, Ushakov K, Shivatzki S, Weiss I, Friedman LM, et al. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genomics. 2014;15:484.
PubMed
PubMed Central
Google Scholar
Liu H, Chen L, Giffen KP, Stringham ST, Li Y, Judge PD, et al. Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters’ Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci. 2018;11:356.
CAS
PubMed
PubMed Central
Google Scholar
Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N, et al. Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet. 2011;88:92–8.
CAS
PubMed
PubMed Central
Google Scholar
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet. 2019;138:831–46.
CAS
PubMed
Google Scholar
Lush ME, Diaz DC, Koenecke N, Baek S, Boldt H, St Peter MK, et al. scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. Elife. 2019:8. https://doi.org/10.7554/eLife.44431.
Lilleväli K, Matilainen T, Karis A, Salminen M. Partially overlapping expression of Gata2 and Gata3 during inner ear development. Dev Dyn. 2004;231:775–81.
PubMed
Google Scholar
Haugas M, Tikker L, Achim K, Salminen M, Partanen J. Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development. 2016;143:4495–508.
CAS
PubMed
Google Scholar
Hoshino T, Terunuma T, Takai J, Uemura S, Nakamura Y, Hamada M, et al. Spiral ganglion cell degeneration-induced deafness as a consequence of reduced GATA factor activity. Genes Cells. 2019;24:534–45.
CAS
PubMed
Google Scholar
Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 2004;77:505–19.
CAS
PubMed
Google Scholar
Duncan JS, Fritzsch B. Evolution of sound and balance perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of corti. Anat Rec. 2012;295:1760–74.
Google Scholar
Whitfield TT. Zebrafish as a model for hearing and deafness. J Neurobiol. 2002;53:157–71.
PubMed
Google Scholar
Nicolson T. The genetics of hearing and balance in zebrafish. Annu Rev Genet. 2005;39:9–22.
CAS
PubMed
Google Scholar
Drummond MC, Belyantseva IA, Friderici KH, Friedman TB. Actin in hair cells and hearing loss. Hear Res. 2012;288:89–99.
CAS
PubMed
Google Scholar
Pacentine I, Chatterjee P, Barr-Gillespie PG. Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21010324.
Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature. 2007;449:87–91.
CAS
PubMed
Google Scholar
Senften M, Schwander M, Kazmierczak P, Lillo C, Shin J-B, Hasson T, et al. Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J Neurosci. 2006;26:2060–71.
CAS
PubMed
PubMed Central
Google Scholar
Grati M, Kachar B. Myosin VIIa and sans localization at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction. Proceedings of the National Academy of Sciences. 2011;108:11476–81.
CAS
Google Scholar
Delprat B, Michel V, Goodyear R, Yamasaki Y, Michalski N, El-Amraoui A, et al. Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet. 2005;14:401–10.
CAS
PubMed
Google Scholar
Yu I-M, Planelles-Herrero VJ, Sourigues Y, Moussaoui D, Sirkia H, Kikuti C, et al. Myosin 7 and its adaptors link cadherins to actin. Nat Commun. 2017;8:15864.
CAS
PubMed
PubMed Central
Google Scholar
Li J, He Y, Weck ML, Lu Q, Tyska MJ, Zhang M. Structure of Myo7b/USH1C complex suggests a general PDZ domain binding mode by MyTH4-FERM myosins. Proc Natl Acad Sci U S A. 2017;114:E3776–85.
CAS
PubMed
PubMed Central
Google Scholar
Okamoto S, Chaya T, Omori Y, Kuwahara R, Kubo S, Sakaguchi H, et al. Ick Ciliary Kinase Is Essential for Planar Cell Polarity Formation in Inner Ear Hair Cells and Hearing Function. J Neurosci. 2017;37:2073–85.
CAS
PubMed
PubMed Central
Google Scholar
Bianchi LM, Liu H. Comparison of Ephrin-A ligand and EphA receptor distribution in the developing inner ear. Anat Rec. 1999;254:127–34.
CAS
PubMed
Google Scholar
Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, et al. Lossof-function analysis of EphA receptors in retinotectal mapping. J Neurosci. 2004;24:2542–50.
CAS
PubMed
PubMed Central
Google Scholar
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull. 2009;79:227–47.
CAS
PubMed
Google Scholar
Peled A, Sarig O, Samuelov L, Bertolini M, Ziv L, Weissglas-Volkov D, et al. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis. PLoS Genet. 2016;12:e1006369.
PubMed
PubMed Central
Google Scholar
Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature. 2016;538:523–7.
PubMed
PubMed Central
Google Scholar
Park S, Yang J-S, Kim J, Shin Y-E, Hwang J, Park J, et al. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases. Sci Rep. 2012;2:757.
PubMed
PubMed Central
Google Scholar
Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15:496–503.
CAS
PubMed
PubMed Central
Google Scholar
Okoruwa OE, Weston MD, Sanjeevi DC, Millemon AR, Fritzsch B, Hallworth R, et al. Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evol Dev. 2008;10:300–15.
CAS
PubMed
PubMed Central
Google Scholar
Sotomayor M, Weihofen WA, Gaudet R, Corey DP. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature. 2012;492:128–32.
CAS
PubMed
PubMed Central
Google Scholar
Bartsch TF, Hengel FE, Oswald A, Dionne G, Chipendo IV, Mangat SS, et al. Elasticity of individual protocadherin 15 molecules implicates tip links as the gating springs for hearing. Proc Natl Acad Sci U S A. 2019;116:11048–56.
CAS
PubMed
PubMed Central
Google Scholar
Grati M ’hamed, Yan D, Raval MH, Walsh T, Ma Q, Chakchouk I, et al. MYO3A Causes Human Dominant Deafness and Interacts with Protocadherin 15-CD2 Isoform. Hum Mutat. 2016;37:481–487.
Stern DL, Orgogozo V. THE LOCI OF EVOLUTION: HOW PREDICTABLE IS GENETIC EVOLUTION? Evolution. 2008;62:2155–2177.
Andolfatto P. Adaptive evolution of non-coding DNA in Drosophila. Nature. 2005;437:1149–52.
CAS
PubMed
Google Scholar
Sabarís G, Laiker I, Preger-Ben Noon E, Frankel N. Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity. Trends Genet. 2019;35:423–33.
PubMed
Google Scholar
Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, et al. Comprehensive Analysis of a cis-Regulatory Region Reveals Pleiotropy in Enhancer Function. Cell Rep. 2018;22:3021–31.
CAS
PubMed
Google Scholar
Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. Localizing recent adaptive evolution in the human genome. PLoS Genet. 2007;3:e90.
PubMed
PubMed Central
Google Scholar
Akey JM. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res. 2009;19:711–22.
CAS
PubMed
PubMed Central
Google Scholar
Daub JT, Moretti S, Davydov II, Excoffier L, Robinson-Rechavi M. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans. Molecular Biology and Evolution. 2017;34:1391–402. https://doi.org/10.1093/molbev/msx083.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGowen MR, Tsagkogeorga G, Williamson J, Morin PA, Rossiter ASJ. Positive Selection and Inactivation in the Vision and Hearing Genes of Cetaceans. Mol Biol Evol. 2020;37:2069–83.
CAS
PubMed
Google Scholar
Shen Y-Y, Liang L, Li G-S, Murphy RW, Zhang Y-P. Parallel evolution of auditory genes for echolocation in bats and toothed whales. PLoS Genet. 2012;8:e1002788.
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Kanduri C, Oikkonen J, Karma K, Raijas P, Ukkola-Vuoti L, et al. Detecting signatures of positive selection associated with musical aptitude in the human genome. Sci Rep. 2016;6:21198.
CAS
PubMed
PubMed Central
Google Scholar
Ranum PT, Goodwin AT, Yoshimura H, Kolbe DL, Walls WD, Koh J-Y, et al. Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing. Cell Rep. 2019, 26:3160–71.e3.
Naranjo S, Smith JD, Artieri CG, Zhang M, Zhou Y, Palmer ME, et al. Dissecting the Genetic Basis of a Complex cis-Regulatory Adaptation. PLoS Genet. 2015;11:e1005751.
PubMed
PubMed Central
Google Scholar
Enard D, Messer PW, Petrov DA. Genome-wide signals of positive selection in human evolution. Genome Res. 2014;24:885–95.
CAS
PubMed
PubMed Central
Google Scholar
Fraser HB. Gene expression drives local adaptation in humans. Genome Res. 2013;23:1089–96.
CAS
PubMed
PubMed Central
Google Scholar
Ingham NJ, Pearson SA, Vancollie VE, Rook V, Lewis MA, Chen J, et al. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biol. 2019;17:e3000194.
CAS
PubMed
PubMed Central
Google Scholar
Löytynoja A. Phylogeny-aware alignment with PRANK. Methods in Molecular Biology. 2014;1079:155–70.
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Di Franco A, Poujol R, Baurain D, Philippe H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol Biol. 2019;19:21.
PubMed
PubMed Central
Google Scholar
Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Mol Biol Evol. 2018;35:2582–4.
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995;57:289–300.
Google Scholar
Yang Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol. 2000;51:423–32.
CAS
PubMed
Google Scholar
Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994;11:725–36.
CAS
PubMed
Google Scholar
Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJP, et al. OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One Hundred Mammalian Genomes. Mol Biol Evol. 2019;36:861–2.
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.
CAS
PubMed
Google Scholar
Ranwez V, Chantret N. Strengths and limits of multiple sequence alignment and filtering methods. 2020. https://hal.archives-ouvertes.fr/hal-02535389/document.
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191–8.
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.
CAS
PubMed
Google Scholar
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.
CAS
PubMed
PubMed Central
Google Scholar
Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, et al. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun. 2018;9:4737.
PubMed
PubMed Central
Google Scholar
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.
CAS
PubMed
PubMed Central
Google Scholar
Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 2016;17:2042–59.
CAS
PubMed
PubMed Central
Google Scholar
Sauerwald N, Kingsford C. Quantifying the similarity of topological domains across normal and cancer human cell types. Bioinformatics. 2018;34:i475–83.
CAS
PubMed
PubMed Central
Google Scholar
McArthur E, Capra JA. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am J Hum Genet. 2021;108:269–83.
CAS
PubMed
PubMed Central
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.
CAS
PubMed
PubMed Central
Google Scholar
Fisher S, Grice EA, Vinton RM, Bessling SL, Urasaki A, Kawakami K, et al. Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc. 2006;1:1297–305.
CAS
PubMed
Google Scholar
Kamm GB, Pisciottano F, Kliger R, Franchini LF. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol. 2013;30:1088–102.
CAS
PubMed
PubMed Central
Google Scholar
Carney SA, Prasch AL, Heideman W, Peterson RE. Understanding dioxin developmental toxicity using the zebrafish model. Birth Defects Res A Clin Mol Teratol. 2006;76:7–18.
CAS
PubMed
Google Scholar
Trigila AP, Franchini L. All data generated or analysed during this study are included in this published article and its supplementary information files. Alignment files and code used for the analysis were deposited in figshare: https://figshare.com/s/afde8f3c7bc03f15413c. Figshare. 2021.