Isbell LA. Snakes as agents of evolutionary change in primate brains. J Human Evol. 2006;51(1):1–35. https://doi.org/10.1016/j.jhevol.2005.12.012.
Article
Google Scholar
L. A. Isbell, The fruit, the tree, and the serpent (Harvard University Press, 2009), DOI: https://doi.org/10.2307/j.ctvjnrvj0.
Öhman A, Mineka S. The malicious serpent: snakes as a prototypical stimulus for an evolved module of fear. Curr Direct Psychol Sci. 2003;12(1):5–9. https://doi.org/10.1111/1467-8721.01211.
Article
Google Scholar
Soares SC, Lindström B, Esteves F, Öhman A. The hidden snake in the grass: superior detection of snakes in challenging attentional conditions. PLoS one. 2014;9(12):e114724. https://doi.org/10.1371/journal.pone.0114724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soares SC. The lurking snake in the grass: interference of snake stimuli in visually taxing conditions. Evol Psychol. 2012;10(2):147470491201000202. https://doi.org/10.1177/147470491201000202.
Article
Google Scholar
Le QV, et al. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceed Natl Acad Sci. 2013;110(47):19000–5. https://doi.org/10.1073/pnas.1312648110.
Article
CAS
Google Scholar
Isbell LA, Etting SF. Scales drive detection, attention, and memory of snakes in wild vervet monkeys (Chlorocebus pygerythrus). Primates. 2017;58(1):121–9. https://doi.org/10.1007/s10329-016-0562-y.
Yoder AD, Yang Z. Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. Molecular Ecology. 2004;13(4):757–73. https://doi.org/10.1046/j.1365-294X.2004.02106.x.
Article
CAS
PubMed
Google Scholar
Alencar LR, et al. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol Phylogenet Evol. 2016;105:50–62. https://doi.org/10.1016/j.ympev.2016.07.029.
Article
PubMed
Google Scholar
Lee MS, Sanders KL, King B, Palci A. Diversification rates and phenotypic evolution in venomous snakes (Elapidae). R Soc Open Sci. 2016;3(1):150277. https://doi.org/10.1098/rsos.150277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrago CG, Russo CA. Timing the origin of New World monkeys. Mol Biol Evol. 2003;20(10):1620–5. https://doi.org/10.1093/molbev/msg172.
Article
CAS
PubMed
Google Scholar
Zamudio KR, Greene HW. Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biol J Linnean Soc. 1997;62(3):421–42. https://doi.org/10.1006/bijl.1997.0162.
W. Wüster et al., Origins and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. Biology of the Vipers, 111-128 (2002).
Wüster W, Peppin L, Pook CE, Walker DE. A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol. 2008;49(2):445–59. https://doi.org/10.1016/j.ympev.2008.08.019.
Article
PubMed
Google Scholar
Kazandjian TD, Petras D, Robinson SD, van Thiel J, Greene HW, Arbuckle K, et al. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science. 2021;371(6527):386–90. https://doi.org/10.1126/science.abb9303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution. 2014;75:165–83. https://doi.org/10.1016/j.ympev.2014.02.023.
Article
PubMed
PubMed Central
Google Scholar
Andrews P. Last common ancestor of apes and humans: Morphology and environment. Folia Primatologica. 2020;91(2):122–48. https://doi.org/10.1159/000501557.
Article
Google Scholar
M. O'Shea, The Book of Snakes: A life-size guide to six hundred species from around the world (University of Chicago Press, 2018), DOI: https://doi.org/10.7208/chicago/9780226459424.001.0001.
McGrew WC. Snakes as hazards: modelling risk by chasing chimpanzees. Primates. 2015;56(2):107–11. https://doi.org/10.1007/s10329-015-0456-4.
Article
PubMed
Google Scholar
Carotenuto F, Tsikaridze N, Rook L, Lordkipanidze D, Longo L, Condemi S, et al. Venturing out safely: the biogeography of Homo erectus dispersal out of Africa. Journal of Human Evolution. 2016;95:1–12. https://doi.org/10.1016/j.jhevol.2016.02.005.
Article
CAS
PubMed
Google Scholar
Greene HW. Evolutionary scenarios and primate natural history. The American Naturalist. 2017;190(S1):S69–86. https://doi.org/10.1086/692830.
Article
PubMed
Google Scholar
Headland TN, Greene HW. Hunter–gatherers and other primates as prey, predators, and competitors of snakes. Proceedings of the National Academy of Sciences. 2011;108(52):E1470–4. https://doi.org/10.1073/pnas.1115116108.
Article
Google Scholar
Boinski S. Use of a club by a wild white-faced capuchin (Cebus capucinus) to attack a venomous snake (Bothrops asper). American Journal of Primatology. 1988;14(2):177–9. https://doi.org/10.1002/ajp.1350140208.
Panagides N, Jackson T, Ikonomopoulou M, Arbuckle K, Pretzler R, Yang D, et al. How the cobra got its flesh-eating venom: Cytotoxicity as a defensive innovation and its co-evolution with hooding, aposematic marking, and spitting. Toxins. 2017;9(3):103. https://doi.org/10.3390/toxins9030103.
Article
CAS
PubMed Central
Google Scholar
Drabeck DH, Dean AM, Jansa SA. Why the honey badger don’t care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. Toxicon. 2015;99:68–72. https://doi.org/10.1016/j.toxicon.2015.03.007.
Article
CAS
Google Scholar
Holding ML, Biardi JE, Gibbs HL. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proceedings of the Royal Society of London B: Biological Sciences. 2016;283(1829):20152841. https://doi.org/10.1098/rspb.2015.2841.
Article
CAS
Google Scholar
Holding ML, Putman BJ, Kong LM, Smith JE, Clark RW. Physiological stress integrates resistance to rattlesnake venom and the onset of risky foraging in California ground squirrels. Toxins. 2020;12(10):617. https://doi.org/10.3390/toxins12100617.
Article
PubMed Central
Google Scholar
Kachalsky SG, Jensen BS, Barchan D, Fuchs S. Two subsites in the binding domain of the acetylcholine receptor: an aromatic subsite and a proline subsite. Proceedings of the National Academy of Sciences. 1995;92(23):10801–5. https://doi.org/10.1073/pnas.92.23.10801.
Article
CAS
Google Scholar
Drabeck DH, Rucavado A, Hingst-Zaher E, Cruz YP, Dean AM, Jansa SA. Resistance of South American opossums to vWF-binding venom C-type lectins. Toxicon. 2020;178:92–9. https://doi.org/10.1016/j.toxicon.2020.02.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
S. A. Jansa, R. S. Voss, Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS One 6 (2011).
Coss RG, Poran NS, Gusé KL, Smith DG. Development of antisnake defenses in California ground squirrels (Spermophilus beecheyi): II. Microevolutionary effects of relaxed selection from rattlesnakes. Behaviour. 1993;124(1-2):137–62. https://doi.org/10.1163/156853993X00542.
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology. 2004;74(6):363–96. https://doi.org/10.1016/j.pneurobio.2004.09.006.
Article
CAS
PubMed
Google Scholar
Fambrough DM. Control of acetylcholine receptors in skeletal muscle. Physiological Reviews. 1979;59(1):165–227. https://doi.org/10.1152/physrev.1979.59.1.165.
Article
CAS
PubMed
Google Scholar
Galzi J, Revah F, Bessis A, Changeux J. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. Ann Rev Pharmaco Toxicol. 1991;31(1):37–72. https://doi.org/10.1146/annurev.pa.31.040191.000345.
Article
CAS
Google Scholar
Barber CM, Isbister GK, Hodgson WC. Alpha neurotoxins. Toxicon. 2013;66:47–58. https://doi.org/10.1016/j.toxicon.2013.01.019.
Article
CAS
PubMed
Google Scholar
Nirthanan S, Gwee MC. Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci. 2004;94(1):1–17. https://doi.org/10.1254/jphs.94.1.
Article
CAS
PubMed
Google Scholar
Harris RJ, Zdenek CN, Debono J, Harrich D, Fry BG. Evolutionary interpretations of nicotinic acetylcholine receptor targeting venom effects by a clade of Asian Viperidae snakes. Neurotoxic Res. 2020;38(2):312–8. https://doi.org/10.1007/s12640-020-00211-2.
Article
CAS
Google Scholar
Ishikawa Y, Kano M, Tamiya N, Shimada Y. Acetylcholine receptors of human skeletal muscle: A species difference detected by snake neurotoxins. Brain Research. 1985;346(1):82–8. https://doi.org/10.1016/0006-8993(85)91097-2.
Article
CAS
PubMed
Google Scholar
Dellisanti C, Yao Y, Stroud JC, Wang Z-Z, Chen L. Structural determinants for α-neurotoxin sensitivity in muscle nAChR and their implications for the gating mechanism. Channels. 2007;1(4):234–7. https://doi.org/10.4161/chan.4909.
Article
PubMed
Google Scholar
Silva A, Cristofori-Armstrong B, Rash LD, Hodgson WC, Isbister GK. Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans. Cellular and molecular life sciences. 2018;75(23):4465–78. https://doi.org/10.1007/s00018-018-2893-x.
Article
CAS
PubMed
Google Scholar
Fry BG, Lumsden NG, Wister W, Wickramaratna JC, Hodgson WC, Manjunatha Kini R. Isolation of a neurotoxin (α-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. J Mol Evol. 2003;57(4):446–52. https://doi.org/10.1007/s00239-003-2497-3.
Article
CAS
PubMed
Google Scholar
Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. Journal of Biological Chemistry. 2006;281(39):29030–41. https://doi.org/10.1074/jbc.M605850200.
Pawlak J, Mackessy SP, Sixberry NM, Stura EA, le du MH, Ménez R, et al. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. The FASEB Journal. 2009;23(2):534–45. https://doi.org/10.1096/fj.08-113555.
Article
CAS
PubMed
Google Scholar
Heyborne WH, Mackessy SP. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae). Biochimie. 2013;95(10):1923–32. https://doi.org/10.1016/j.biochi.2013.06.025.
Mackessy SP, Sixberry NM, Heyborne WH, Fritts T. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006;47(5):537–48. https://doi.org/10.1016/j.toxicon.2006.01.007.
Harris RJ, Youngman NJ, Zdenek CN, Huynh TM, Nouwens A, Hodgson WC, et al. Assessing the binding of venoms from aquatic elapids to the nicotinic acetylcholine receptor orthosteric site of different prey models. International Journal of Molecular Sciences. 2020;21(19):7377. https://doi.org/10.3390/ijms21197377.
Article
CAS
PubMed Central
Google Scholar
Harris RJ, Zdenek CN, Harrich D, Frank N, Fry BG. An appetite for destruction: Detecting prey-selective binding of α-neurotoxins in the venom of Afro-Asian elapids. Toxins. 2020;12(3):205. https://doi.org/10.3390/toxins12030205.
Article
CAS
PubMed Central
Google Scholar
Zdenek CN, Harris RJ, Kuruppu S, Youngman NJ, Dobson JS, Debono J, et al. A taxon-specific and high-throughput method for measuring ligand binding to nicotinic acetylcholine receptors. Toxins. 2019;11(10):600. https://doi.org/10.3390/toxins11100600.
Article
CAS
PubMed Central
Google Scholar
Barchan D, Ovadia M, Kochva E, Fuchs S. The binding site of the nicotinic acetylcholine receptor in animal species resistant to. alpha-bungarotoxin. Biochemistry. 1995;34(28):9172–6. https://doi.org/10.1021/bi00028a029.
Article
CAS
Google Scholar
C. D. Dellisanti, Y. Yao, J. C. Stroud, Z.-Z. Wang, L. Chen, Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution. Nature neuroscience 10, 953-962 (2007).
S. Tzartos, M. S. Remoundos, Fine localization of the major alpha-bungarotoxin binding site to residues alpha 189-195 of the Torpedo acetylcholine receptor. Residues 189, 190, and 195 are indispensable for binding. Journal of Biological Chemistry 265, 21462-21467 (1990).
Peckre LR, Defolie C, Kappeler PM, Fichtel C. Potential self-medication using millipede secretions in red-fronted lemurs: combining anointment and ingestion for a joint action against gastrointestinal parasites? Primates. 2018;59(5):483–94. https://doi.org/10.1007/s10329-018-0674-7.
Article
PubMed
Google Scholar
Tarvin RD, Borghese CM, Sachs W, Santos JC, Lu Y, O’Connell LA, et al. Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science. 2017;357(6357):1261–6. https://doi.org/10.1126/science.aan5061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, et al. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proceed Natl Acad Sci. 1992;89(16):7717–21. https://doi.org/10.1073/pnas.89.16.7717.
Article
CAS
Google Scholar
Takacs Z, Wilhelmsen KC, Sorota S. Snake α-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor is conserved. Mol Biol Evol. 2001;18(9):1800–9. https://doi.org/10.1093/oxfordjournals.molbev.a003967.
Takacs Z, Wilhelmsen KC, Sorota S. Cobra (Naja spp.) nicotinic acetylcholine receptor exhibits resistance to erabu sea snake (Laticauda semifasciata) short-chain α-neurotoxin. J Mol Evol. 2004;58:516–26.
Khan MA, Dashevsky D, Kerkkamp H, Kordiš D, de Bakker MAG, Wouters R, et al. Widespread evolution of molecular resistance to snake venom α-neurotoxins in vertebrates. Toxins. 2020;12(10):638. https://doi.org/10.3390/toxins12100638.
Article
CAS
PubMed Central
Google Scholar
Madani G, Nekaris KA-I. Anaphylactic shock following the bite of a wild Kayan slow loris (Nycticebus kayan): implications for slow loris conservation. J VenomAnim Toxins Trop Dis. 2014;20(1):1–5. https://doi.org/10.1186/1678-9199-20-43.
Nekaris KA-I, Moore RS, Rode EJ, Fry BG. Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. J Venom Anim Toxins Trop Dis. 2013;19(1):21. https://doi.org/10.1186/1678-9199-19-21.
Article
Google Scholar
Harris RJ, Fry BG. Electrostatic resistance to alpha-neurotoxins conferred by charge reversal mutations in nicotinic acetylcholine receptors. Proceedings of the Royal Society B. 2021;288(1942):20202703. https://doi.org/10.1098/rspb.2020.2703.
Article
CAS
PubMed
Google Scholar
Hayes WK, Herbert SS, Harrison JR, Wiley KL. Spitting versus biting: differential venom gland contraction regulates venom expenditure in the black-necked spitting cobra, Naja nigricollis nigricollis. J Herpetol. 2008;42(3):453–60. https://doi.org/10.1670/07-076.1.
Article
Google Scholar
Young BA, Zahn K. Venom flow in rattlesnakes: mechanics and metering. J Exper Biol. 2001;204(24):4345–51. https://doi.org/10.1242/jeb.204.24.4345.
Article
CAS
Google Scholar
Morgenstern D, King GF. The venom optimization hypothesis revisited. Toxicon. 2013;63:120–8. https://doi.org/10.1016/j.toxicon.2012.11.022.
Article
CAS
PubMed
Google Scholar
J. B. Silk, P. M. Kappeler, Sociality in primates. Comparative Social Evolution, 253-283 (2017).
J. Terborgh, C. Janson, The socioecology of primate groups. Annual Review of Ecology and Systematics, 111-136 (1986).
Kurland JA. Kin selection theory: a review and selective bibliography. Ethol Sociobiol. 1980;1(4):255–74. https://doi.org/10.1016/0162-3095(80)90012-6.
Article
Google Scholar
J. B. Silk, "Practicing Hamilton’s rule: kin selection in primate groups" in Cooperation in primates and humans. (Springer, 2006), pp. 25-46.
Silk JB. Kin selection in primate groups. Int J Primatol. 2002;23(4):849–75. https://doi.org/10.1023/A:1015581016205.
Article
Google Scholar
Ramakrishnan U, Coss RG, Schank J, Dharawat A, Kim S. Snake species discrimination by wild bonnet macaques (Macaca radiata). Ethology. 2005;111(4):337–56. https://doi.org/10.1111/j.1439-0310.2004.01063.x.
Seyfarth RM, Cheney DL, Marler P. Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science. 1980;210(4471):801–3. https://doi.org/10.1126/science.7433999.
Article
CAS
PubMed
Google Scholar
McLane KE, Wu X, Conti-Tronconi BM. An α-bungarotoxin-binding sequence on the Torpedo nicotinic acetylcholine receptor α-subunit: conservative amino acid substitutions reveal side-chain specific interactions. Biochemistry. 1994;33(9):2576–85. https://doi.org/10.1021/bi00175a029.
K. E. McLane, X. Wu, B. Diethelm, B. M. Conti-Tronconi, Structural determinants of α-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor. α-subunit: effects of cysteine/cystine modification and species-specific amino acid substitutions. Biochemistry 30, 4925-4934 (1991).
Testai FD, Venera GD, Peña C, de Jiménez Bonino MJB. Histidine 186 of the nicotinic acetylcholine receptor α subunit requires the presence of the 192–193 disulfide bridge to interact with α-bungarotoxin. Neurochem Int. 2000;36(1):27–33. https://doi.org/10.1016/S0197-0186(99)00099-6.
Article
CAS
PubMed
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20(2):289–90. https://doi.org/10.1093/bioinformatics/btg412.
Article
CAS
PubMed
Google Scholar
L. J. Revell, phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217-223 (2012).