Siddiqui K, On KF, Diffley JFX. Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol. Cold Spring Harbor Lab. 2013;5:a012930.
Article
CAS
Google Scholar
Jameson K, Wilkinson AJ. Control of initiation of DNA replication in Bacillus subtilis and Escherichia coli. Genes. 2017;8:22–32.
Article
CAS
PubMed Central
Google Scholar
Bipatnath M, Dennis PP, Bremer H. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J Bacteriol. 1998;180(2):265–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helmstetter CE. Timing of synthetic activities in the cell cycle. In: Neidhart FC, Curtis RI, Ingraham EC, Lin KB, editors. (null) LECC Escherichia coli and Salmonella. Washington DC: ASM Press; 1996. p. 1591–605.
Google Scholar
Schaechter M, Maaloe O, O KN. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol. 1958;19:592–606.
Article
CAS
PubMed
Google Scholar
Sharpe ME, Hauser PM, Sharpe RG, Errington J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol. 1998;180(3):547–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchakjian MR, Kornbluth S. The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Microbiol. 2010;11:715–27.
CAS
Google Scholar
Burnetti AJ, Aydin M, Buchler NE. Cell cycle Start is coupled to entry into the yeast metabolic cycle across diverse strains and growth rates. Mol Biol Cell. 2015;27:64–74.
Article
CAS
PubMed
Google Scholar
Ewald JC. How yeast coordinates metabolism, growth and division. Curr Opin Microbiol. 2018;45:1–7.
Article
CAS
PubMed
Google Scholar
Klevecz RR, Bolen J, Forrest G, Murray DB. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Aca Sci USA. 2004;101(5):1200–5.
Article
CAS
Google Scholar
Papagiannakis A, Niebel B, Wit EC, Heinemann M. Autonomous metabolic oscillations robustly gate the early and late cell cycle. Mol Cell. 2017;65:285–95.
Article
CAS
PubMed
Google Scholar
Tu BP, Kudlicki A, Rowicka M, McKnight SL. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science. 2005;310:1152–8.
Article
CAS
PubMed
Google Scholar
Yu F-X, Dai R-P, Goh S-R, Zheng L, Luo Y. Logic of a mammalian metabolic cycle: an oscillated NAD+/NADH redox signaling regulates coordinated histone expression and S-phase progression. Cell Cycle. 2009;8(5):773–9.
Article
CAS
PubMed
Google Scholar
Flåtten I, Fossum-Raunehaug S, Taipale R, Martinsen S, Skarstad K. The DnaA protein is not the limiting factor for initiation of replication in Escherichia coli. PLoS Genet. 2015;11(6):e1005276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray H, Koh A. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis. PLoS Genet. 2014;10(10):e1004731.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathews CK. Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat Rev Cancer. 2015;15:528–39.
Article
CAS
PubMed
Google Scholar
Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.
Article
CAS
PubMed
Google Scholar
Hu C-M, Tien S-C, Hsieh P-K, Jeng Y-M, Chang M-C, Chang Y-T, et al. High glucose triggers nucleotide imbalance through O-GlcNAcylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell Metab. 2019;29:1334–49.
Article
CAS
PubMed
Google Scholar
Lu M, Campbell JL, Boye E, Kleckner N. SeqA: a negative modulator of replication nitiation in E. coli. Cell. 1994;77:413–26.
Article
CAS
PubMed
Google Scholar
Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, et al. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem. 2004;279(44):45546–55.
Article
CAS
PubMed
Google Scholar
Baranska S, Glinkowska M, Herman-Antosiewicz A, Maciag-Dorszynska M, Nowicki D, Szalewska-Palasz A, et al. Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells. Microb Cell Fact. 2013;12:55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boye E, Nordström K. Coupling the cell cycle to cell growth. EMBO Rep. 2003;4(8):757–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JD, Levin PA. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol. 2009;7(11):822–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Y-CN, Stillman B. Yph1p, an ORC-interacting protein: potential links between cell proliferation control, DNA replication, and ribosome biogenesis. Cell. 2002;109:835–48.
Article
CAS
PubMed
Google Scholar
Beaufay F, Coppine J, Hallez R. When the metabolism meets the cell cycle in bacteria. Curr Opin Microbiol. 2021;60:104–13.
Article
CAS
PubMed
Google Scholar
Fernández-Coll L, Maciag-Dorszynska M, Tailor K, Vadia S, Levin PA, Szalewska-Palasz A, et al. The absence of (p)ppGpp renders initiation of Escherichia coli chromosomal DNA synthesis independent of growth rates. mBio. 2020;11(2):e03223–19.
Article
PubMed
PubMed Central
Google Scholar
DeNapoli J, Tehranchi AK, Wang JD. Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis. Mol Microbiol. 2013;88(11):93–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez JV, Bremer H. Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. J Biol Chem. 1993;268(15):10851–62.
Article
CAS
PubMed
Google Scholar
Chubukov V, Gerosa L, Kochanowski K, Sauer U. Coordination of microbial metabolism. Nat Rev Microbiol. 2014;12:327–40.
Article
CAS
PubMed
Google Scholar
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2021;21:183–203.
Article
CAS
Google Scholar
Hughes P, Landoulsi A, Kohiyama M. A novel role for cAMP in the control of the activity of the E. coli chromosome replication initiator protein, DnaA. Cell. 1988;55:343–50.
Article
CAS
PubMed
Google Scholar
Maciąg M, Nowicki D, Jannière L, Szalewska-Pałasz A, Wegrzyn G. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb Cell Fact. 2011;10:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maciag-Dorszynska M, Ignatowska M, Jannière L, Wegrzyn G, Szalewska-Pałasz A. Mutations in central carbon metabolism genes suppress defects in nucleoid position and cell division of replication mutants in Escherichia coli. Gene. 2012;503:31–5.
Article
CAS
PubMed
Google Scholar
Tymecka-Mulik J, Boss L, Maciag-Dorszynska M, Matias Rodrigues JF, Gaffke L, Wosinski A, et al. Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism. PLoS One. 2017;12(4):e0176050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Zhou A, Li S, Ni J, Tao J, Lu J, et al. Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli. Sci Rep. 2016;6:30837.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krause K, Maciag-Dorszynska M, Wosinski A, Gaffke L, Morcinek-Orłowska J, Rintz E, et al. The role of metabolites in the link between DNA replication and central carbon metabolism in Escherichia coli. Genes. 2020;11:447.
Article
CAS
PubMed Central
Google Scholar
Bergé M, Pezzatti J, Gonzalez-Ruiz V, Degeorges L, Mottet-Osman G, Rudaz S, et al. Bacterial cell cycle control by citrate synthase independent of enzymatic activity. eLife. 2020;9:e52272.
Article
PubMed
PubMed Central
Google Scholar
Laffan J, Firshein W. Membrane protein binding to the origin region of Bacillus subtilis. J Bacteriol. 1987;169(9):4135–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laffan J, Firshein W. Origin-specific DNA-binding membrane-associated protein may be involved in repression of initiation in Bacillus subtilis. Proc Natl Aca Sci USA. 1988;85:7452–6.
Article
CAS
Google Scholar
Stein A, Firshein W. Probable identification of a membrane-associated repressor of Bacillus subtilis DNA replication as the E2 subunit of the pyruvate dehydrogenase complex. J Bacteriol. 2000;182(8):2119–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noirot-Gros M-F, Dervyn E, Wu LJ, Mervelet P, Errington J, Ehrlich SD, et al. An expanded view of bacterial DNA replication. Proc Natl Aca Sci USA. 2002;99(12):8342–7.
Article
CAS
Google Scholar
Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, et al. Genetic evidence for a link between glycolysis and DNA replication. PLoS One. 2007;5:e447.
Article
CAS
Google Scholar
Paschalis V, Le Chatelier E, Green M, Képès F, Soultanas P, Jannière L. Interactions of the Bacillus subtilis DnaE polymerase with replisomal proteins modulate its activity and fidelity. Open Biol. 2017;7:170146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nouri H, Monnier A-F, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman A, Képès F, et al. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res. 2018;25(6):641–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dervyn E, Suski C, Daniel R, Bruand C, Chapuis J, Errington J, et al. Two essential DNA polymerases at the bacterial replication fork. Science. 2001;294:1716–9.
Article
CAS
PubMed
Google Scholar
Le Chatelier E, Becherel OJ, d'Alencon E, Canceill D, Ehrlich SD, Fuchs RPP, et al. Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. J Biol Chem. 2004;279(3):1757–67.
Article
CAS
PubMed
Google Scholar
Sanders GM, Dallmann HG, McHenry CS. Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases. Mol Cell. 2010;37:273–81.
Article
CAS
PubMed
Google Scholar
Soultanas P. Loading mechanisms of ring helicases at replication origins. Mol Microbiol. 2012;84(1):6–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rannou O, Le Chatelier E, Larson MA, Nouri H, Dalmais B, Laughton C, et al. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis. Nucleic Acids Res. 2013;41(10):5303–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickinson JR, Williams AS. The cdc30 mutation in Saccharomyces cerevisiae results in a temperature-sensitive isoenzyme of phosphoglucose isomerase. J Gen Microbiol. 1987;133:135–40.
CAS
PubMed
Google Scholar
Fornalewicz K, Wieczorek A, Wegrzyn G, Łyżeń R. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts. Gene. 2017;635:33–8.
Article
CAS
PubMed
Google Scholar
Konieczna A, Szczepańska A, Sawiuk K, Wegrzyn G, Łyżeń R. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biol. 2015;16:16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sprague GFJ. Isolation and characterization of a Saccharomyces cerevisiae mutant deficient in pyruvate kinase activity. J Bacteriol. 1977;130(1):232–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wieczorek A, Fornalewicz K, Mocarski Ł, Łyżeń R, Wegrzyn G. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts. Gene. 2018;650:1–6.
Article
CAS
PubMed
Google Scholar
Ronai Z. Glycolytic enzymes as DNA binding proteins. Int J Biochem Cell Biol. 1993;25(7):1073–6.
CAS
Google Scholar
Sirover MA. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1999;1432:159–84.
Article
CAS
PubMed
Google Scholar
Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: Biochemical mechanisms and regulatory control. Biochim Biophys Acta. 2011;1810:741–51.
Article
CAS
PubMed
Google Scholar
Kim J-W, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30(3):142–50.
Article
CAS
PubMed
Google Scholar
Konieczna A, Szczepańska A, Sawiuk K, Łyżeń R, Wegrzyn G. Enzymes of the central carbon metabolism: are they linkers between transcription, DNA replication, and carcinogenesis? Med Hypotheses. 2015;84:58–67.
Article
CAS
PubMed
Google Scholar
Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci. 2016;41(8):712–30.
Article
CAS
PubMed
Google Scholar
Lu Z, Hunter T. Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci. 2018;43(4):301–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med. 2018;50:34.
Article
CAS
PubMed Central
Google Scholar
Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell. 2011;42:426–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, et al. A nuclear pyruvate dehydrogenase complex is important for the generation of Acetyl-CoA and histone acetylation. Cell. 2014;158:84–97.
Article
CAS
PubMed
Google Scholar
Wellen HG, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009;324:1076–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng L, Roeder RG, Luo Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell. 2003;114:255–66.
Article
CAS
PubMed
Google Scholar
Dai RP, Yu FX, Goh SR, Chng HW, Tan YL, Fu JL, et al. Histone 2B (H2B) expression is confined to a proper NAD+/NADH redox status. J Biol Chem. 2008;283(4):26894–901.
Article
CAS
PubMed
Google Scholar
Ma R, Wu Y, Zhai Y, Hu B, Ma W, Yang W, et al. Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT–NAD+–SIRT1 pathway. Nucleic Acids Res. 2019;47(21):11132–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Qian X, Jiang H, Xia Y, Zheng Y, Li J, et al. Nuclear PGK1 alleviates ADP-dependent inhibition of CDC7 to promote DNA replication. Mol Cell. 2018;72:650–60.
Article
CAS
PubMed
Google Scholar
Grosse F, Nasheuer H-P, Scholtissek S, Schomburg U. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-α–primase complex. Eur J Biochem. 1986;160:459–67.
Article
CAS
PubMed
Google Scholar
Popanda O, Fox G, Thielmann HW. Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerat kinase. Biochim Biophys Acta. 1998;1397:102–17.
Article
CAS
PubMed
Google Scholar
Jindal HK, Vishwanatha JK. Functional identity of a primer recognition protein as phosphoglycerate kinase. J Biol Chem. 1990;265(12):6540–3.
Article
CAS
PubMed
Google Scholar
Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein Sci. 2019;28(1771):1784.
Google Scholar
Suzuki K, Ito S, Shimizu-Ibuka A, Sakai H. Crystal structure of pyruvate kinase from Geobacillus stearothermophilus. J Biochem. 2008;144(3):305–12.
Article
CAS
PubMed
Google Scholar
Morgan HP, Zhong W, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Structures of pyruvate kinases display evolutionarily divergent allosteric strategies. R Soc Open Sci. 2014;1:140120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012;335:1103–6.
Article
CAS
PubMed
Google Scholar
Muntel J, Fromion V, Goelzer A, Maab S, Mäder U, Büttner K, et al. Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatographis/mass spectrometry. Mol Cell Proteomics. 2014;13(4):1008–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakai H. Possible structure and function of the extra C-terminal sequence of pyruvate kinase from Bacillus stearothermophilus. J Biochem. 2004;136:471–6.
Article
CAS
PubMed
Google Scholar
Nguyen CC, Saier MH Jr. Phylogenetic analysis of the putative phosphorylation domain in the pyruvate kinase of Bacillus stearothermophilus. Res Microbiol. 1995;146:713–9.
Article
CAS
PubMed
Google Scholar
Alpert CA, Frank R, Stüber K, Deutscher J, Hengstenberg W. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center. Biochemistry. 1985;24:959–64.
Article
CAS
PubMed
Google Scholar
Teplyakov A, Lim K, Zhu PP, Kapadia G, Chen CCH, Schwartz J, et al. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Proc Natl Aca Sci USA. 2006;103(44):16218–23.
Article
CAS
Google Scholar
Goss NH, Evans CT, Wood HG. Pyruvate phosphate dikinase: sequence of the histidyl peptide, the pyrophosphoryl and phosphoryl carrier. Biochemistry. 1980;19:5805–9.
Article
CAS
PubMed
Google Scholar
Herzberg O, Chen CC, Kapadia G, McGuire M, Carroll LJ, Noh SJ, et al. Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites. Proc Natl Aca Sci USA. 1996;93:2652–7.
Article
CAS
Google Scholar
Tolentino R, Chastain C, Burnell J. Identification of the amino acid involved in the regulation of bacterial pyruvate, orthophosphate dikinase and phosphoenolpyruvate synthetase. Adv Biol Chem. 2013;03:12–21.
Article
Google Scholar
Burnell JN, Chastain CJ. Cloning and expression of maize-leaf pyruvate, Pi dikinase regulatory protein gene. Biochem Biophys Res Commun. 2006;345:675–80.
Article
CAS
PubMed
Google Scholar
Burnell JN. Cloning and characterization of Escherichia coli DUF299: a bifunctional ADP-dependent kinase - Pi-dependent pyrophosphorylase from bacteria. BMC Biochem. 2010;11:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnell JN, Hatch MD. Regulation of C4 photosynthesis: Identification of a catalycally important histidine residue and its role in the regulation of pyruvate. Pi dikinase Arch Biochem Biophys. 1984;231(1):175–82.
Article
CAS
PubMed
Google Scholar
Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, et al. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics. 2004;4:2849–76.
Article
CAS
PubMed
Google Scholar
Mäder U, Schmeisky AG, Flórez LA, Stülke J. SubtiWiki--a comprehensive community resource for the model organism Bacillus subtilis. Nucleic Acids Res. 2012;40(D1):D1278–87.
Article
CAS
PubMed
Google Scholar
Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, et al. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 2009;150(2):889–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pisithkul T, Patel NM, Amador-Noguez D. Post-translational modifications as key regulators of bacterial metabolic fluxes. Curr Opin Microbiol. 2015;24:29–37.
Article
CAS
PubMed
Google Scholar
Brunk E, Chang RL, Xia J, Hefzi H, Yurkovich JT, Kim D, et al. Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proc Natl Aca Sci USA. 2018;115(43):11096–101.
Article
CAS
Google Scholar
Bollenbach TJ, Mesecar AD, Nowak T. Role of lysine 240 in the mechanism of yeast pyruvate kinase catalysis. Biochemistry. 1999;38:9137–45.
Article
CAS
PubMed
Google Scholar
Stuani L, Lechaplais C, Salminen AV, Sérugens B, Durot M, Castelli V, et al. Novel metabolic features in Acinetobacter baylyi ADP1 revealed by a multiomics approach. Metabolomics. 2014;10:1223–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubois T, Krzewinski F, Yamakawa N, Lemy C, Hamiot A, Brunet L, et al. Genes encode an original legionaminic acid pathway required for crust assembly in Bacillus subtilis. mBio. 2020;11:e01153–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Washington TA, Smith JL, Grossman AD. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis. Mol Microbiol. 2017;106(1):109–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morigen OI, Skarstad K. Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli. Genes Cells. 2009;14:643–57.
Article
CAS
PubMed
Google Scholar
Gao S, Bao J, Gu X, Xin X, Chen C, Ryu DDY. Substrate promiscuity of pyruvate kinase on various deoxynucleoside diphosphates for synthesis of deoxynucleoside triphosphates. Enzyme Microb Technol. 2008;43:455–9.
Article
CAS
Google Scholar
Meile J-C, Wu LJ, Ehrlich SD, Errington J, Noirot P. Systematic localisation of proteins fused to the green fluorescent protein inBacillus subtilis: Identification of new proteins at the DNA replication factory. Proteomics. 2006;6(7):2135–46.
Article
CAS
PubMed
Google Scholar
Bruck I, O'Donnell M. The DNA replication machine of a gram-positive organism. J Biol Chem. 2000;275(37):28971–83.
Article
CAS
PubMed
Google Scholar
Chuang C, Prasanth KR, Nagy PD. The glycolytic pyruvate kinase is recruited directly into the viral replicase complex to generate ATP for RNA synthesis. Cell Host Microbe. 2017;22:639–52.
Article
CAS
PubMed
Google Scholar
Pancholi V, Chhatwal GS. Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol. 2003;293:391–401.
Article
CAS
PubMed
Google Scholar
Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET, Synovec RE, et al. Cyclic changes in metabolic state during the life of a yeast cell. Proc Natl Aca Sci USA. 2007;104(43):16886–91.
Article
CAS
Google Scholar
Ewald JC, Kuehne A, Zamboni N, Skotheim JM. The yeast cyclin-dependent kinase routes carbon fluxes to fuel cell cycle progression. Mol Cell. 2016;62:532–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartl J, Kiefer P, Kaczmarczyk A, Mittelviefhaus M, Meyer F, Vonderach T, et al. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat Metab. 2020;2:153–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J-B, Hite RK, Hamdan SM, Xie SX, Richardson CC, van Oijen AM. DNA primase acts as a molecular break in DNA replication. Nature. 2006;439(7076):621–4.
Article
CAS
PubMed
Google Scholar
Tanner NA, Hamdan SM, Jergic S, Schaeffer PM, Dixon NE, van Oijen AM. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol. 2008;15(2):170–6.
Article
CAS
PubMed
Google Scholar
Yao NY, Georgescu RE, Finkelstein J, O'Donnell ME. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Aca Sci USA. 2009;106(32):13236–41.
Article
CAS
Google Scholar
Georgescu RE, Yao N, Indiani C, Yurieva O, O'Donnell ME. Replisome mechanics: lagging strand events that influence speed and processivity. Nucleic Acids Res. 2014;42(10):6497–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodgers K, McVey M. Error-Prone repair of DNA double-strand breaks. J Cell Physiol. 2016;231:15–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loeb LA. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer. 2011;11(6):450–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol Mech Dis. 2015;10:425–48.
Article
CAS
Google Scholar
Oskam L, Hillenga DJ, Venema G, Bron S. The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid. 1991;26:30–9.
Article
CAS
PubMed
Google Scholar
Magill NG, Setlow P. Properties of purified sporlets produced by spoII mutants of Bacillus subtilis. J Bacteriol Am Soc Microbiol. 1992;174(24):8148–51.
Article
CAS
Google Scholar
Séror SJ, Casarégola S, Vannier F, Zouari N, Dahl M, Boye E. A mutant cysteinyl-tRNA synthetase affecting timing of chromosomal replication initiation in B. subtilis and conferring resistance to a protein kinase C inhibitor. EMBO J. 1994;13(10):2472–80.
Article
PubMed
PubMed Central
Google Scholar
Thomas M, Stuani L, Darii E, Lechaplais C, Pateau E, Tabet J-C, et al. De novo structure determination of 3-((3-aminopropyl)amino)- 4-hydroxybenzoic acid, a novel and abundant metabolite in Acinetobacter baylyi ADP1. Metabolomics. 2019;15:45.
Article
CAS
PubMed
Google Scholar
Chambers MC, Maclean B, Burke R, Amode D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CA, Want EJ, OMaille G, Abagyan R, Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87.
Article
CAS
PubMed
Google Scholar
Tautenhahn R, Böttcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics. 2008;9:504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaude E, Chignola F, Spiliotopoulos D, Spitaleri A, Ghitti M, Garcia-Manteiga J, et al. muma, an R package for metabolomics univariate and multivariate statistical analysis. Curr Metabolomics. 2013;1:180–9.
Article
CAS
Google Scholar
Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18.
Article
Google Scholar
Haug. MetaboLights : a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48(D1):D440–4.
CAS
PubMed
Google Scholar