Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490–507. https://doi.org/10.1038/s41580-019-0131-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33(2):187–97. https://doi.org/10.1038/nbt.3117.
Article
CAS
PubMed
Google Scholar
Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science. 2019;364(6437):286–9. https://doi.org/10.1126/science.aav9023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazzarotto CR, Malinin NL, Li Y, Zhang R, Yang Y, Lee G, et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity. Nat Biotechnol. 2020;38(11):1317–27. https://doi.org/10.1038/s41587-020-0555-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84. https://doi.org/10.1038/nbt.2808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bin Moon S, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Nat Commun. 2018;9(1):3651. https://doi.org/10.1038/s41467-018-06129-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Xu L, Fan R, Gao Q, Song Y, Lyu X, et al. Genetic editing and interrogation with Cpf1 and caged truncated pre-tRNA-like crRNA in mammalian cells. Cell Discov. 2018;4:36. https://doi.org/10.1038/s41421-018-0035-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park HM, Liu H, Wu J, Chong A, Mackley V, Fellmann C, et al. Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat Commun. 2018;9(1):3313. https://doi.org/10.1038/s41467-018-05641-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Z, Herrera-Carrillo E, Berkhout B. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA. RNA Biol. 2018;15(12):1458–67. https://doi.org/10.1080/15476286.2018.1551703.
Article
PubMed
PubMed Central
Google Scholar
Li B, Zhao W, Luo X, Zhang X, Li C, Zeng C, et al. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed Eng. 2017;1(5). https://doi.org/10.1038/s41551-017-0066.
Kweon J, Jang AH, Kim DE, Yang JW, Yoon M, Rim Shin H, et al. Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun. 2017;8(1):1723. https://doi.org/10.1038/s41467-017-01650-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding D, Chen K, Chen Y, Li H, Xie K. Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol Plant. 2018;11(4):542–52. https://doi.org/10.1016/j.molp.2018.02.005.
Article
CAS
PubMed
Google Scholar
Liu P, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 2019;47(8):4169–80. https://doi.org/10.1093/nar/gkz184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim H, Lee WJ, Oh Y, Kang SH, Hur JK, Lee H, et al. Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide. Nucleic Acids Res. 2020;48(15):8601–16. https://doi.org/10.1093/nar/gkaa605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling X, Chang L, Chen H, Gao X, Yin J, Zuo Y, et al. Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Mol Cell. 2021;81(22):4747–56 e7. https://doi.org/10.1016/j.molcel.2021.09.021.
Article
CAS
PubMed
Google Scholar
Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. 2018;36(4):324–7. https://doi.org/10.1038/nbt.4102.
Article
CAS
PubMed
Google Scholar
Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24(8):1216–24. https://doi.org/10.1038/s41591-018-0137-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36(3):265–71. https://doi.org/10.1038/nbt.4066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57–63. https://doi.org/10.1038/nature26155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun. 2018;9(1):3048. https://doi.org/10.1038/s41467-018-05477-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmid-Burgk JL, Gao L, Li D, Gardner Z, Strecker J, Lash B, et al. Highly parallel profiling of Cas9 variant specificity. Mol Cell. 2020;78(4):794–800 e8. https://doi.org/10.1016/j.molcel.2020.02.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5. https://doi.org/10.1038/nature16526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8. https://doi.org/10.1126/science.aad5227.
Article
CAS
PubMed
Google Scholar
Kulcsar PI, Talas A, Huszar K, Ligeti Z, Toth E, Weinhardt N, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 2017;18(1):190. https://doi.org/10.1186/s13059-017-1318-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550(7676):407–10. https://doi.org/10.1038/nature24268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, et al. Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol. 2017;35(8):789–92. https://doi.org/10.1038/nbt.3900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol. 2019;37(3):276–82. https://doi.org/10.1038/s41587-018-0011-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–44. https://doi.org/10.1038/s41587-020-0561-9.
Article
CAS
PubMed
Google Scholar
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71. https://doi.org/10.1016/j.cell.2015.09.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zetsche B, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F. A survey of genome editing activity for 16 Cas12a orthologs. Keio J Med. 2020;69(3):59–65. https://doi.org/10.2302/kjm.2019-0009-OA.
Article
CAS
PubMed
Google Scholar
Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016;532(7600):517–21. https://doi.org/10.1038/nature17945.
Article
CAS
PubMed
Google Scholar
Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods. 2019;16(9):887–93. https://doi.org/10.1038/s41592-019-0508-6.
Article
CAS
PubMed
Google Scholar
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol. 2017;35(1):31–4. https://doi.org/10.1038/nbt.3737.
Article
CAS
PubMed
Google Scholar
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935–49. https://doi.org/10.1016/j.cell.2014.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–9. https://doi.org/10.1126/science.aar6245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teng F, Guo L, Cui T, Wang XG, Xu K, Gao Q, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019;20(1):132. https://doi.org/10.1186/s13059-019-1742-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–8. https://doi.org/10.1038/nbt.3609.
Article
CAS
PubMed
Google Scholar
Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34(8):869–74. https://doi.org/10.1038/nbt.3620.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Wei H, Wang Y, Deng J, Tang Y, Zhou L, et al. Targeted disruption of V600E-mutant BRAF gene by CRISPR-Cpf1. Mol Ther Nucleic Acids. 2017;8:450–8. https://doi.org/10.1016/j.omtn.2017.05.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. 2019;9:36. https://doi.org/10.1186/s13578-019-0298-7.
Article
PubMed
PubMed Central
Google Scholar
Li S, Zhang X, Wang W, Guo X, Wu Z, Du W, et al. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol Plant. 2018;11(7):995–8. https://doi.org/10.1016/j.molp.2018.03.009.
Article
CAS
PubMed
Google Scholar
Zhong Z, Zhang Y, You Q, Tang X, Ren Q, Liu S, et al. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant. 2018;11(7):999–1002. https://doi.org/10.1016/j.molp.2018.03.008.
Article
CAS
PubMed
Google Scholar
Xu R, Qin R, Li H, Li J, Yang J, Wei P. Enhanced genome editing in rice using single transcript unit CRISPR-LbCpf1 systems. Plant Biotechnol J. 2019;17(3):553–5. https://doi.org/10.1111/pbi.13028.
Article
PubMed
Google Scholar
Liu RM, Liang LL, Freed E, Chang H, Oh E, Liu ZY, et al. Synthetic chimeric nucleases function for efficient genome editing. Nat Commun. 2019;10(1):5524. https://doi.org/10.1038/s41467-019-13500-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toth E, Varga E, Kulcsar PI, Kocsis-Jutka V, Krausz SL, Nyeste A, et al. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res. 2020;48(7):3722–33. https://doi.org/10.1093/nar/gkaa110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindele P, Puchta H. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnol J. 2020;18(5):1118–20. https://doi.org/10.1111/pbi.13275.
Article
PubMed
Google Scholar
Port F, Starostecka M, Boutros M. Multiplexed conditional genome editing with Cas12a in Drosophila. Proc Natl Acad Sci U S A. 2020;117(37):22890–9. https://doi.org/10.1073/pnas.2004655117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Lim K, Kim DE, Kim JS. Genome-wide specificity of dCpf1 cytidine base editors. Nat Commun. 2020;11(1):4072. https://doi.org/10.1038/s41467-020-17889-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin U, Brondani V. Analysis of wild type LbCpf1 protein, and PAM recognition variants, in a cellular context. Front Genet. 2020;11:571591. https://doi.org/10.3389/fgene.2020.571591.
Article
CAS
PubMed
Google Scholar
Gier RA, Budinich KA, Evitt NH, Cao Z, Freilich ES, Chen Q, et al. High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nat Commun. 2020;11(1):3455. https://doi.org/10.1038/s41467-020-17209-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeWeirdt PC, Sanson KR, Sangree AK, Hegde M, Hanna RE, Feeley MN, et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol. 2021;39(1):94–104. https://doi.org/10.1038/s41587-020-0600-6.
Article
CAS
PubMed
Google Scholar
Zhang L, Zuris JA, Viswanathan R, Edelstein JN, Turk R, Thommandru B, et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat Commun. 2021;12(1):3908. https://doi.org/10.1038/s41467-021-24017-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Chen P, Wang H, Liu H, Li Y, Zhang Y, et al. Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. 2022;30(1):244–55. https://doi.org/10.1016/j.ymthe.2021.10.010.
Article
CAS
PubMed
Google Scholar
Liu X, Liu X, Zhou C, Lv J, He X, Liu Y, et al. Engineered FnCas12a with enhanced activity through directional evolution in human cells. J Biol Chem. 2021:100394. https://doi.org/10.1016/j.jbc.2021.100394.
Toth E, Czene BC, Kulcsar PI, Krausz SL, Talas A, Nyeste A, et al. Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Res. 2018;46(19):10272–85. https://doi.org/10.1093/nar/gky815.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018;4:63. https://doi.org/10.1038/s41421-018-0069-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Zhou J, Wan Y, Liu H, Li Y, Liu Z, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. https://doi.org/10.1186/s13059-020-01989-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobsen T, Ttofali F, Liao C, Manchalu S, Gray BN, Beisel CL. Characterization of Cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Nucleic Acids Res. 2020;48(10):5624–38. https://doi.org/10.1093/nar/gkaa272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Yuan Q, Zhu Y, Gao X, Song J, Yin Z. Improving FnCas12a genome editing by exonuclease fusion. CRISPR J. 2020;3(6):503–11. https://doi.org/10.1089/crispr.2020.0073.
Article
CAS
PubMed
Google Scholar
Tran MH, Park H, Nobles CL, Karunadharma P, Pan L, Zhong G, et al. A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Mol Ther Nucleic Acids. 2021;24:40–53. https://doi.org/10.1016/j.omtn.2021.02.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu D, Wang J, Yang D, Xi J, Li J. High-throughput profiling of Cas12a orthologues and engineered variants for enhanced genome editing activity. Int J Mol Sci. 2021;22(24):13301. https://doi.org/10.3390/ijms222413301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Ren Q, Tang X, Liu S, Malzahn AA, Zhou J, et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat Commun. 2021;12(1):1944. https://doi.org/10.1038/s41467-021-22330-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol. 2019;20(1):15. https://doi.org/10.1186/s13059-019-1620-8.
Article
PubMed
PubMed Central
Google Scholar
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell. 2016;165(4):949–62. https://doi.org/10.1016/j.cell.2016.04.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Hu Y, Huang G, Ma S, Feng J, Wang D, et al. Tag-seq: a convenient and scalable method for genome-wide specificity assessment of CRISPR/Cas nucleases. Commun Biol. 2021;4(1):830. https://doi.org/10.1038/s42003-021-02351-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Luk K, Wolfe SA, Kim JS. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu Rev Biochem. 2019;88:191–220. https://doi.org/10.1146/annurev-biochem-013118-111730.
Article
CAS
PubMed
Google Scholar
Tak YE, Kleinstiver BP, Nunez JK, Hsu JY, Horng JE, Gong J, et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods. 2017;14(12):1163–6. https://doi.org/10.1038/nmeth.4483.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Wang W, Shan L, Han L, Ma S, Zhang Y, et al. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein & Cell. 2018;9(4):380–3. https://doi.org/10.1007/s13238-017-0491-6.
Article
CAS
Google Scholar
Bratovic M, Fonfara I, Chylinski K, Galvez EJC, Sullivan TJ, Boerno S, et al. Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Nat Chem Biol. 2020;16(5):587–95. https://doi.org/10.1038/s41589-020-0490-4.
Article
CAS
PubMed
Google Scholar
Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. 2015;33(11):1159–61. https://doi.org/10.1038/nbt.3390.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breinig M, Schweitzer AY, Herianto AM, Revia S, Schaefer L, Wendler L, et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat Methods. 2019;16(1):51–4. https://doi.org/10.1038/s41592-018-0262-1.
Article
CAS
PubMed
Google Scholar
Singh D, Mallon J, Poddar A, Wang Y, Tippana R, Yang O, et al. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A. 2018;115(21):5444–9. https://doi.org/10.1073/pnas.1718686115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):455–67. https://doi.org/10.1038/nrc3760.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu H, Liu S, Zhang G, Kwong LN, Zhu Y, Miller JP, et al. Oncogenic BRAF-mediated melanoma cell invasion. Cell Rep. 2016;15(9):2012–24. https://doi.org/10.1016/j.celrep.2016.04.073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Z, Zhang Y, Yu H, Pan D, Wang Y, Wang Y, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol. 2021;17(11):1132–8. https://doi.org/10.1038/s41589-021-00868-6.
Article
CAS
PubMed
Google Scholar
Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9. https://doi.org/10.1101/gr.171322.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y, et al. One-step generation of modular CAR-T cells with AAV-Cpf1. Nat Methods. 2019;16(3):247–54. https://doi.org/10.1038/s41592-019-0329-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Lv S, Luo Z, Hu Y, Peng X, Lv J, et al. MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression in vivo. Nucleic Acids Res. 2021;49(7):4171–85. https://doi.org/10.1093/nar/gkab174.
Article
CAS
PubMed
PubMed Central
Google Scholar