Archibald JD, Deutschman DH: Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mamm Evol. 2001, 8: 107-124. 10.1023/A:1011317930838.
Google Scholar
Cooper A, Fortey R: Evolutionary explosions and the phylogenetic fuse. Trends Ecol Evol. 1998, 13: 151-156. 10.1016/S0169-5347(97)01277-9.
CAS
PubMed
Google Scholar
Penny D, Phillips MJ: The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution?. Trends Ecol Evol. 2004, 19: 516-522. 10.1016/j.tree.2004.07.015.
PubMed
Google Scholar
van Tuinen M, Stidham TA, Hadly EA: Tempo and mode of modern bird evolution observed with large-scale taxonomic sampling. Hist Biol. 2006, 18: 205-221. 10.1080/08912960600641174.
Google Scholar
Benton MJ, Ayala FJ: Dating the tree of life. Science. 2003, 300: 1698-1700. 10.1126/science.1077795.
CAS
PubMed
Google Scholar
Edwards SV, Beerli P: Perspective: gene divergence, population divergence, and the variance in coalescent time in phylogeographic studies. Evolution. 2000, 54: 1839-1854.
CAS
PubMed
Google Scholar
Rannala B, Yang Z: Inferring speciation times under an episodic molecular clock. Syst Biol. 2007, 56: 453-466. 10.1080/10635150701420643.
PubMed
Google Scholar
Feduccia A: Explosive evolution in tertiary birds and mammals. Science. 1995, 267: 637-638. 10.1126/science.267.5198.637.
CAS
PubMed
Google Scholar
Feduccia A: 'Big bang' for tertiary birds?. Trends Ecol Evol. 2003, 18: 172-176. 10.1016/S0169-5347(03)00017-X.
Google Scholar
Clarke JA, Tambussi CP, Noriega JI, Erikson GM, Ketcham RA: Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature. 2005, 433: 305-308. 10.1038/nature03150.
CAS
PubMed
Google Scholar
Bleiweiss R: Fossil gap analysis supports early Tertiary origin of trophically diverse avian orders. Geology. 1998, 26: 323-326. 10.1130/0091-7613(1998)026<0323:FGASET>2.3.CO;2.
Google Scholar
Chiappe LM, Dyke GJ: The Mesozoic radiation of birds. Annu Rev Ecol Syst. 2002, 33: 91-124. 10.1146/annurev.ecolsys.33.010802.150517.
Google Scholar
Feduccia A: The Origin and Evolution of Birds. 1999, New Haven: Yale University Press, 2
Google Scholar
Fountaine TM, Benton MJ, Dyke GJ, Nudds RL: The quality of the fossil record of Mesozoic birds. Proc R Soc Lond B Biol Sci. 2005, 272: 289-294. 10.1098/rspb.2004.2923.
Google Scholar
Mayr G: The Paleogene fossil record of birds in Europe. Biol Rev. 2005, 80: 515-542. 10.1017/S1464793105006779.
PubMed
Google Scholar
Brown JW, Payne RB, Mindell DP: Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al. Biol Lett. 2007, 3: 257-259. 10.1098/rsbl.2006.0611.
PubMed Central
CAS
PubMed
Google Scholar
Cooper A, Penny D: Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997, 275: 1109-1113. 10.1126/science.275.5303.1109.
CAS
PubMed
Google Scholar
Hedges SB, Parker PH, Sibley CG, Kumar S: Continental breakup and the ordinal diversification of birds and mammals. Nature. 1996, 381: 226-229. 10.1038/381226a0.
CAS
PubMed
Google Scholar
Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature. 1998, 392: 917-920. 10.1038/31927.
CAS
PubMed
Google Scholar
van Tuinen M, Hedges SB: Calibration of avian molecular clocks. Mol Biol Evol. 2001, 18: 206-213.
CAS
PubMed
Google Scholar
Paton T, Haddrath O, Baker AJ: Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc R Soc Lond B Biol Sci. 2002, 269: 839-846. 10.1098/rspb.2002.1961.
CAS
Google Scholar
Paton TA, Baker AJ, Groth JG, Barrowclough GF: RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds. Mol Phylogenet Evol. 2003, 29: 268-278. 10.1016/S1055-7903(03)00098-8.
CAS
PubMed
Google Scholar
Pereira SL, Baker AJ: A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol. 2006, 23: 1731-1740. 10.1093/molbev/msl038.
CAS
PubMed
Google Scholar
Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Penny D: Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol. 2006, 23: 1144-1155. 10.1093/molbev/msj124.
CAS
PubMed
Google Scholar
Baker AJ, Pereira SL, Paton TA: Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biol Lett. 2007, 3: 205-209. 10.1098/rsbl.2006.0606.
PubMed Central
PubMed
Google Scholar
Rest JS, Ast JC, Austin CC, Waddell PJ, Tibbetts EA, Hay JM, Mindell DP: Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol Phylogenet Evol. 2003, 29: 289-297. 10.1016/S1055-7903(03)00108-8.
CAS
PubMed
Google Scholar
Benton MJ: Vertebrate palaeontology. 1997, London: Chapman and Hall, 2
Google Scholar
Benton MJ, Wills MA, Hitchin R: Quality of the fossil record through time. Nature. 2000, 403: 534-537. 10.1038/35000558.
CAS
PubMed
Google Scholar
Foote M, Hunter JP, Janis CM, Sepkoski JJ: Evolutionary and preservational constraints on origins of biologic groups: divergence times of Eutherian mammals. Science. 1999, 283: 1310-1314. 10.1126/science.283.5406.1310.
CAS
PubMed
Google Scholar
Foote M, Sepkoski JJ: Absolute measures of the completeness of the fossil record. Nature. 1999, 398: 415-417. 10.1038/18872.
CAS
PubMed
Google Scholar
Tavaré S, Marshall CR, Will O, Soligo C, Martin RD: Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature. 2002, 416: 726-729. 10.1038/416726a.
PubMed
Google Scholar
Wills MA: Fossil ghost ranges are most common in some of the oldest and some of the youngest strata. Proc Natl Acad Sci USA. 2007, 274: 2421-2427.
CAS
Google Scholar
Benton MJ: Early origins of modern birds and mammals: molecules vs. morphology. BioEssays. 1999, 21: 1043-1051. 10.1002/(SICI)1521-1878(199912)22:1<1043::AID-BIES8>3.0.CO;2-B.
CAS
PubMed
Google Scholar
Padian K, Chiappe LM: The origin and early evolution of birds. Biol Rev. 1998, 73: 1-42. 10.1017/S0006323197005100.
Google Scholar
Clarke JA, Chiappe LM: A new carinate bird from the late Cretaceous of Patagonia. Am Mus Novit. 2001, 3323: 1-23. 10.1206/0003-0082(2001)323<0001:ANCBFT>2.0.CO;2.
Google Scholar
Stidham TA: A lower jaw from a Cretaceous parrot. Nature. 1998, 396: 29-30. 10.1038/23841.
CAS
Google Scholar
Chatterjee S: The morphology and systematics of Polarornis, a Cretaceous loon (Aves: Gaviidae) from Antarctica. Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution: 1–4 June 2000; Beijing. Edited by: Zhou Z, Zhang F. 2002, Beijing: Science Press, 125-155.
Google Scholar
Dyke GJ, Mayr G: Did parrots exist in the Cretaceous period?. Nature. 1999, 399: 317-318. 10.1038/20583.
CAS
Google Scholar
Dyke GJ, van Tuinen M: The evolutionary radiation of modern birds (Neornithes): reconciling molecules, morphology and the fossil record. Zool J Linn Soc. 2004, 141: 153-177. 10.1111/j.1096-3642.2004.00118.x.
Google Scholar
García-Moreno J: Is there a universal molecular clock for birds?. J Avian Biol. 2004, 35: 465-468. 10.1111/j.0908-8857.2004.03316.x.
Google Scholar
Mindell DP, Knight A, Baer C, Huddleston CJ: Slow rates of molecular evolution in birds and the metabolic rate and body temperature hypotheses. Mol Biol Evol. 1996, 13: 422-426.
CAS
Google Scholar
Lovette IJ: Mitochondrial dating a mixed support for the "2% rule" in birds. Auk. 2004, 121: 1-6. 10.1642/0004-8038(2004)121[0001:MDAMSF]2.0.CO;2.
Google Scholar
Bromham L, Penny D: The modern molecular clock. Nat Rev Genet. 2003, 4: 216-224. 10.1038/nrg1020.
CAS
PubMed
Google Scholar
Magallón SA: Dating lineages: molecular and paleontological approaches to the temporal framework of clades. Int J Plant Sci. 2004, 165: S7-S21. 10.1086/383336.
Google Scholar
Rutschmann F: Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers Distrib. 2006, 12: 35-48. 10.1111/j.1366-9516.2006.00210.x.
Google Scholar
Welch JJ, Bromham L: Molecular dating when rates vary. Trends Ecol Evol. 2004, 20: 320-327. 10.1016/j.tree.2005.02.007.
Google Scholar
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4: e88-10.1371/journal.pbio.0040088.
PubMed Central
PubMed
Google Scholar
Ho SYW, Phillips MJ, Drummond AJ, Cooper A: Accuracy of rate estimation using relaxed-clock models with a critical focus on the early Metazoan radiation. Mol Biol Evol. 2005, 22: 1355-1363. 10.1093/molbev/msi125.
CAS
PubMed
Google Scholar
Easteal S: Molecular evidence for the early divergence of placental mammals. BioEssays. 1999, 21: 1052-1058. 10.1002/(SICI)1521-1878(199912)22:1<1052::AID-BIES9>3.0.CO;2-6.
CAS
PubMed
Google Scholar
Hug LA, Roger AJ: The impact of fossils and taxon sampling on ancient molecular dating analyses. Mol Biol Evol. 2007, 24: 1889-1897. 10.1093/molbev/msm115.
CAS
PubMed
Google Scholar
Linder HP, Hardy CR, Rutschmann F: Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Mol Phylogenet Evol. 2005, 35: 569-582. 10.1016/j.ympev.2004.12.006.
CAS
PubMed
Google Scholar
Pagel M, Venditti C, Meade A: Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science. 2006, 314: 119-121. 10.1126/science.1129647.
CAS
PubMed
Google Scholar
Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, García-Moreno J, Sorenson MD, Yuri T, Mindell DP: Phylogenetic relationships among modern birds (Neornithes): Toward an avian tree of life. Assembling the Tree of Life. Edited by: Cracraft J, Donoghue MJ. 2004, New York: Oxford University Press, 1: 468-489. 1
Google Scholar
Livezey BC, Zusi RL: Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc. 2007, 149: 1-95. 10.1111/j.1096-3642.2006.00293.x.
PubMed Central
PubMed
Google Scholar
Mayr G: Osteological evidence for paraphyly of the avian order Caprimulgiformes (nightjars and allies). J Ornithol. 2002, 143: 82-97. 10.1007/BF02465461.
Google Scholar
Barrowclough GF, Groth JG, Mertz LA: The RAG-1 exon in the avian order Caprimulgiformes: Phylogeny, heterozygosity, and base composition. Mol Phylogenet Evol. 2006, 41: 238-248. 10.1016/j.ympev.2006.05.013.
CAS
PubMed
Google Scholar
Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G: Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006, 4: 543-547. 10.1098/rsbl.2006.0523.
Google Scholar
Fain MG, Houde P: Parallel radiations in the primary clades of birds. Evolution. 2004, 58: 2558-2573.
PubMed
Google Scholar
Griffiths CS: Monophyly of the Falconiformes based on syringeal morphology. Auk. 1994, 111: 787-805.
Google Scholar
Mayr G, Clarke J: The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics. 2003, 19: 527-553. 10.1111/j.1096-0031.2003.tb00387.x.
Google Scholar
Sibley CG, Ahlquist JE: Phylogeny and Classification of Birds. 1990, London: Yale University Press
Google Scholar
Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D: Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol. 2007, 24: 269-280. 10.1093/molbev/msl158.
CAS
PubMed
Google Scholar
Sorenson MD, Oneal E, Garcia-Moreno J, Mindell DP: More taxa, more characters: the hoatzin problem is still unresolved. Mol Biol Evol. 2003, 20: 1484-1498. 10.1093/molbev/msg157.
CAS
PubMed
Google Scholar
de Juana E: Family Pteroclidae (Sandgrouse). Handbook of the Birds of the World. Sandgrouse to Cuckoos. Edited by: del Hoyo J, Elliott A, Sargatal J. 1997, Barcelona: Lynx Edicions, 4: 30-49.
Google Scholar
Slack KE, Delsuc F, McLenachan PA, Arnason U, Penny D: Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol Phylogenet Evol. 2007, 42: 1-13. 10.1016/j.ympev.2006.06.002.
CAS
PubMed
Google Scholar
Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003, 19: 301-302. 10.1093/bioinformatics/19.2.301.
CAS
PubMed
Google Scholar
Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of evolution. Mol Biol Evol. 1998, 15: 1647-1657.
CAS
PubMed
Google Scholar
Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA: Survival in the first hours of the Cenozoic. Geol Soc Am Bull. 2004, 116: 760-768. 10.1130/B25402.1.
Google Scholar
Cracraft J: Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proc R Soc Lond B Biol Sci. 2001, 268: 459-469. 10.1098/rspb.2000.1368.
CAS
Google Scholar
Eldredge N, Gould SJ: Punctuated equilibria: an alternative to phyletic gradualism. Models in Paleobiology. Edited by: Schopt TJM. 1972, San Francisco: Freeman, Cooper, and Co, 82-115.
Google Scholar
Mayr E: Change of genetic environment and evolution. Evolution as a Process. Edited by: Huxley J, Hardy AC, Ford EB. 1954, London: George Allen and Unwin, 157-180.
Google Scholar
Barrachlough TG, Savolainen V: Evolutionary rates and species diversity in flowering plants. Evolution. 2001, 55: 677-683. 10.1554/0014-3820(2001)055[0677:ERASDI]2.0.CO;2.
Google Scholar
Cubo J: Evidence for speciational change in the evolution of ratites (Aves: Palaeognathae). Biol J Linn Soc. 2003, 80: 99-106. 10.1046/j.1095-8312.2003.00222.x.
Google Scholar
Mindell DP, Sites JW, Graur D: Speciational evolution: a phylogenetic test with allozymes in Sceloporus (REPTILIA). Cladistics. 1989, 5: 49-61.
Google Scholar
Bromham L, Woolfit M: Explosive radiations and the reliability of molecular clocks: island endemic radiations as a test case. Syst Biol. 2004, 53: 758-766. 10.1080/10635150490522278.
PubMed
Google Scholar
Aris-Brosou S, Yang Z: Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa. Mol Biol Evol. 2003, 20: 1947-1954. 10.1093/molbev/msg226.
CAS
PubMed
Google Scholar
Dyke GJ: The evolutionary radiation of modern birds: systematics and patterns of diversification. Geology Journal. 2001, 36: 305-315. 10.1002/gj.878.
Google Scholar
Hope S: The Mesozoic record of Neornithes (modern birds). Mesozoic Birds: Above the Heads of Dinosaurs. Edited by: Chiappe LM, Witmer LM. 2002, Berkeley, CA: University of California Press, 339-388.
Google Scholar
Smith AB, Peterson KJ: Dating the time of origin of major clades: molecular clocks and the fossil record. Annu Rev Earth Planet Sci. 2002, 30: 65-88. 10.1146/annurev.earth.30.091201.140057.
CAS
Google Scholar
Marshall CR: Fossil gap analysis supports early Tertiary origin of trophically diverse avian orders: comment. Geology. 1999, 27: 95-10.1130/0091-7613(1999)027<0095:FGASET>2.3.CO;2.
Google Scholar
Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature. 2007, 446: 507-512. 10.1038/nature05634.
CAS
PubMed
Google Scholar
Cutler DJ: Estimating divergence times in the presence of an overdispersed molecular clock. Mol Biol Evol. 2000, 17: 1647-1660.
CAS
PubMed
Google Scholar
Rannala B, Yang Z: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics. 2003, 164: 1645-1656.
PubMed Central
CAS
PubMed
Google Scholar
Ho SYW: Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol. 2007, 38: 409-414.
Google Scholar
Yang Z, Rannala B: Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2006, 23: 212-226. 10.1093/molbev/msj024.
CAS
PubMed
Google Scholar
Brochu CA, Sumrall CD, Theodor JM: When clocks (and communities) collide: estimating divergence time from molecules and the fossil record. J Paleontol. 2004, 78: 1-6. 10.1666/0022-3360(2004)078<0001:WCACCE>2.0.CO;2.
Google Scholar
Donoghue PCJ, Benton MJ: Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol. 2007, 22: 424-431. 10.1016/j.tree.2007.05.005.
PubMed
Google Scholar
Gill F, Wright M: Birds of the World: Recommended English Names. 2006, Princeton, NJ: Princeton University Press
Google Scholar
Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP: Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol. 1999, 12: 105-114. 10.1006/mpev.1998.0602.
CAS
PubMed
Google Scholar
Mindell DP, Sorenson MD, Huddleston CJ, Miranda HCJ, Knight A, Sawchuk SJ, Yuri T: Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. Avian Molecular Evolution and Systematics. Edited by: Mindell DP. 1997, San Diego, CA: Academic Press, 213-247.
Google Scholar
Müller J, Reisz RR: Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays. 2005, 27: 1069-1075. 10.1002/bies.20286.
PubMed
Google Scholar
Sanders KL, Lee MSY: Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol Lett. 2007, 3: 275-279. 10.1098/rsbl.2007.0063.
PubMed Central
CAS
PubMed
Google Scholar
Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005, 21: 456-463. 10.1093/bioinformatics/bti191.
CAS
PubMed
Google Scholar
Felsenstein J: PHYLIP (Phylogeny Inference Package) 3.6. 2004, Seattle, WA: Department of Genome Sciences, University of Washington
Google Scholar
Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) 4 (beta 10). 2003, Sunderland, MA: Sinauer Associates
Google Scholar
Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002, 19: 101-109.
CAS
PubMed
Google Scholar
Sanderson MJ: A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol. 1997, 14: 1218-1231.
CAS
Google Scholar
Britton T, Anderson CL, Jaquet D, Lundqvist S, Bremer K: PATHd8 – a new method for estimating divergence times in large phylogenetic trees without a molecular clock. 2006, [http://www.math.su.se/PATHd8]
Google Scholar
Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K: Estimating divergence times in large phylogenetic trees. Syst Biol. 2007, 56: 741-752. 10.1080/10635150701613783.
PubMed
Google Scholar
Thorne JL: MULTIDISTRIBUTE. 2003, [http://statgen.ncsu.edu/thorne/multidivtime.html]
Google Scholar
Kishino H, Thorne JL, Bruno WJ: Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol. 2001, 18: 352-361.
CAS
PubMed
Google Scholar
Thorne JL, Kishino H: Divergence time and evolutionary rate estimation. Syst Biol. 2002, 51: 689-702. 10.1080/10635150290102456.
PubMed
Google Scholar
Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13: 555-556.
CAS
PubMed
Google Scholar
Cutler DJ: Dating5. 2000
Google Scholar
Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007, 7: 214-10.1186/1471-2148-7-214.
PubMed Central
PubMed
Google Scholar
Suchard MA, Weiss RE, Sinsheimer JS: Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol. 2001, 18: 1001-1013.
CAS
PubMed
Google Scholar
Rambaut A, Drummond AJ: TreeAnnotator 1.4.5. 2006, [http://tree.bio.ed.ac.uk/software/treeannotator/]
Google Scholar
Pagel M, Venditti C, Meade A: Test for Punctuational Evolution and the Node-Density Artifact. 2006, [http://www.evolution.reading.ac.uk/pe/index.html]
Google Scholar
Mayr G: Old world fossil record of modern-type hummingbirds. Science. 2004, 304: 861-864. 10.1126/science.1096856.
CAS
PubMed
Google Scholar