Lempradl A. Germ cell-mediated mechanisms of epigenetic inheritance. Semin Cell Dev Biol. 2020;97:116–22. https://doi.org/10.1016/j.semcdb.2019.07.012.
Article
CAS
PubMed
Google Scholar
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc. 2017;92(4):2084–111. https://doi.org/10.1111/brv.12322.
Article
PubMed
Google Scholar
Willis AR, Sukhdeo R, Reinke AW. Remembering your enemies: mechanisms of within-generation and multigenerational immune priming in Caenorhabditis elegans. Febs j. 2020.
Burton NO, Riccio C, Dallaire A, Price J, Jenkins B, Koulman A, et al. Cysteine synthases CYSL-1 and CYSL-2 mediate C. elegans heritable adaptation to P. vranovensis infection. Nat Commun. 2020;11(1):1741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, et al. Neuronal small RNAs control behavior transgenerationally. Cell. 2019;177(7):1814–26 e1815. https://doi.org/10.1016/j.cell.2019.04.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaletsky R, Moore RS, Vrla GD, Parsons LR, Gitai Z, Murphy CT. C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature. 2020;586(7829):445–51.
Webster AK, Jordan JM, Hibshman JD, Chitrakar R, Baugh LR. Transgenerational effects of extended dauer diapause on starvation survival and gene expression plasticity in Caenorhabditis elegans. Genetics. 2018;210(1):263–74. https://doi.org/10.1534/genetics.118.301250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton NO, Furuta T, Webster AK, Kaplan REW, Baugh LR, Arur S, Horvitz HR. Insulin-like signalling to the maternal germline controls progeny response to osmotic stress.Nat Cell Biol. 2017;19:252.
Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol. 2019;21(2):143–51. https://doi.org/10.1038/s41556-018-0242-9.
Article
CAS
PubMed
Google Scholar
Jablonka E. Epigenetic inheritance and plasticity: the responsive germline. Prog Biophys Mol Biol. 2013;111(2-3):99–107. https://doi.org/10.1016/j.pbiomolbio.2012.08.014.
Article
PubMed
Google Scholar
Öst A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159(6):1352–64. https://doi.org/10.1016/j.cell.2014.11.005.
Article
CAS
PubMed
Google Scholar
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400. https://doi.org/10.1126/science.aad7977.
Article
CAS
PubMed
Google Scholar
Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–6. https://doi.org/10.1126/science.aad6780.
Article
CAS
PubMed
Google Scholar
Perez MF, Francesconi M, Hidalgo-Carcedo C, Lehner B. Maternal age generates phenotypic variation in Caenorhabditis elegans. Nature. 2017;552(7683):106–9. https://doi.org/10.1038/nature25012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan JM, Hibshman JD, Webster AK, Kaplan REW, Leinroth A, Guzman R, et al. Insulin/IGF signaling and vitellogenin provisioning mediate intergenerational adaptation to nutrient stress. Curr Biol. 2019;29(14):2380–2388.e5. https://doi.org/10.1016/j.cub.2019.05.062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mousseau TA, Fox CW. The adaptive significance of maternal effects. Trends Ecol Evol. 1998;13(10):403–7. https://doi.org/10.1016/S0169-5347(98)01472-4.
Article
CAS
PubMed
Google Scholar
Baugh LR, Day T. Nongenetic inheritance and multigenerational plasticity in the nematode C. elegans. eLlife. 2020;9:58498.
Article
Google Scholar
Agrawal AA, Laforsch C, Tollrian R. Transgenerational induction of defences in animals and plants. Nature. 1999;401(6748):60–3. https://doi.org/10.1038/43425.
Article
CAS
Google Scholar
Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature. 2011;479(7373):365–71. https://doi.org/10.1038/nature10572.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rechavi O, Houri-Ze'evi L, Anava S, Goh WS, Kerk SY, Hannon GJ, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell. 2014;158(2):277–87. https://doi.org/10.1016/j.cell.2014.06.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Félix MA. Alternative morphs and plasticity of vulval development in a rhabditid nematode species. Dev Genes Evol. 2004;214(2):55–63. https://doi.org/10.1007/s00427-003-0376-y.
Article
PubMed
Google Scholar
Chaudhuri J, Bose N, Tandonnet S, Adams S, Zuco G, Kache V, et al. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci Rep. 2015;5(1):17676. https://doi.org/10.1038/srep17676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanzaki N, Kiontke K, Tanaka R, Hirooka Y, Schwarz A, Muller-Reichert T, et al. Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Sci Rep. 2017;7(1):11135. https://doi.org/10.1038/s41598-017-09871-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shakes DC, Neva BJ, Huynh H, Chaudhuri J, Pires-daSilva A. Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat Commun. 2011;2(1):157. https://doi.org/10.1038/ncomms1160.
Article
CAS
PubMed
Google Scholar
Chaudhuri J, Kache V, Pires-daSilva A. Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Curr Biol. 2011;21(18):1548–51. https://doi.org/10.1016/j.cub.2011.08.009.
Article
CAS
PubMed
Google Scholar
Johnigk SA, Ehlers RU. Juvenile development and life cycle of Heterorhabditis bacteriophora and H-indica (Nematoda : Heterorhabditidae). Nematology. 1999;1(3):251–60. https://doi.org/10.1163/156854199508234.
Article
Google Scholar
Cassada RC, Russell RL. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975;46(2):326–42. https://doi.org/10.1016/0012-1606(75)90109-8.
Article
CAS
PubMed
Google Scholar
Demoinet E, Li S, Roy R. AMPK blocks starvation-inducible transgenerational defects in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2017;114(13):E2689–98. https://doi.org/10.1073/pnas.1616171114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jobson MA, Jordan JM, Sandrof MA, Hibshman JD, Lennox AL, Baugh LR. Transgenerational effects of early life starvation on growth, reproduction and stress resistance in Caenorhabditis elegans. Genetics. 2015.
Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004;18(24):3004–9.
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. https://doi.org/10.1038/nrm3311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18–24. https://doi.org/10.1016/j.tibs.2003.11.005.
Article
CAS
PubMed
Google Scholar
Narbonne P, Roy R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development. 2006;133(4):611–9. https://doi.org/10.1242/dev.02232.
Article
CAS
PubMed
Google Scholar
Fukuyama M, Sakuma K, Park R, Kasuga H, Nagaya R, Atsumi Y, et al. C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol Open. 2012;1(10):929–36. https://doi.org/10.1242/bio.2012836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 2000;345(Pt 3):437–43. https://doi.org/10.1042/bj3450437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Cho JS, Lambacher N, Lee J, Lee SJ, Lee TH, et al. The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior. J Biol Chem. 2008;283(22):14988–93. https://doi.org/10.1074/jbc.M709115200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–51. https://doi.org/10.1038/s41573-019-0019-2.
Article
CAS
PubMed
Google Scholar
El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–8. https://doi.org/10.1074/jbc.275.1.223.
Article
CAS
PubMed
Google Scholar
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14. https://doi.org/10.1042/bj3480607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. https://doi.org/10.1172/JCI13505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto K, Goransson O, Hardie DG, Alessi DR. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab. 2004;287(2):E310–7. https://doi.org/10.1152/ajpendo.00074.2004.
Article
CAS
PubMed
Google Scholar
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329–35. https://doi.org/10.1073/pnas.0308061100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J. 2008;412(2):211–21. https://doi.org/10.1042/BJ20080557.
Article
CAS
PubMed
Google Scholar
Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351(6270):275–81. https://doi.org/10.1126/science.aab4138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou WL, Yin J, Alimujiang M, Yu XY, Ai LG, Bao YQ, et al. Inhibition of mitochondrial complex I improves glucose metabolism independently of AMPK activation. J Cell Mol Med. 2018;22(2):1316–28. https://doi.org/10.1111/jcmm.13432.
Article
CAS
PubMed
Google Scholar
Seamon KB, Daly JW, Metzger H, de Souza NJ, Reden J. Structure-activity relationships for activation of adenylate cyclase by the diterpene forskolin and its derivatives. J Med Chem. 1983;26(3):436–9. https://doi.org/10.1021/jm00357a021.
Article
CAS
PubMed
Google Scholar
Xenos ES, Stevens SL, Freeman MB, Cassada DC, Goldman MH. Nitric oxide mediates the effect of fluvastatin on intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression on human endothelial cells. Ann Vasc Surg. 2005;19(3):386–92. https://doi.org/10.1007/s10016-005-0011-7.
Article
PubMed
Google Scholar
Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995;229(2):558–65. https://doi.org/10.1111/j.1432-1033.1995.tb20498.x.
Article
CAS
PubMed
Google Scholar
Hussey R, Stieglitz J, Mesgarzadeh J, Locke TT, Zhang YK, Schroeder FC, et al. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans. Plos Genet. 2017;13(5):e1006806. https://doi.org/10.1371/journal.pgen.1006806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336(6083):918–22. https://doi.org/10.1126/science.1215327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang LN, Xu L, Zhou HY, Wu LY, Li YY, Pang T, et al. Novel small-molecule AMP-activated protein kinase allosteric activator with beneficial effects in db/db mice. Plos One. 2013;8(8):e72092. https://doi.org/10.1371/journal.pone.0072092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. 2018;3(12):e99114. https://doi.org/10.1172/jci.insight.99114.
Article
PubMed Central
Google Scholar
Watts JL, Morton DG, Bestman J, Kemphues KJ. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development. 2000;127(7):1467–75.
Article
CAS
PubMed
Google Scholar
Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13(22):2004–8. https://doi.org/10.1016/j.cub.2003.10.031.
Article
CAS
PubMed
Google Scholar
Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2(4):28. https://doi.org/10.1186/1475-4924-2-28.
Article
PubMed
PubMed Central
Google Scholar
Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 2003;22(12):3062–72. https://doi.org/10.1093/emboj/cdg292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–14. https://doi.org/10.1093/emboj/cdg490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010;11(6):453–65. https://doi.org/10.1016/j.cmet.2010.05.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18. https://doi.org/10.1038/nrm2672.
Article
CAS
PubMed
Google Scholar
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. https://doi.org/10.1016/j.cell.2006.01.016.
Article
CAS
PubMed
Google Scholar
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. https://doi.org/10.1038/nrm3025.
Article
CAS
PubMed
Google Scholar
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. https://doi.org/10.1016/j.cell.2012.03.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905–9. https://doi.org/10.1126/science.1715094.
Article
CAS
PubMed
Google Scholar
Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713–24. https://doi.org/10.1016/j.cmet.2012.04.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoxhaj G, Hughes-Hallett J, Timson RC, Ilagan E, Yuan M, Asara JM, et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 2017;21(5):1331–46. https://doi.org/10.1016/j.celrep.2017.10.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci U S A. 2002;99(21):13481–6. https://doi.org/10.1073/pnas.172501499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hindupur SK, Gonzalez A, Hall MN. The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control. Cold Spring Harb Perspect Biol. 2015;7(8):a019141. https://doi.org/10.1101/cshperspect.a019141.
Article
PubMed
PubMed Central
Google Scholar
Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62. https://doi.org/10.1038/ng0497-356.
Article
CAS
PubMed
Google Scholar
Ogg S, Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell. 1998;2(6):887–93. https://doi.org/10.1016/S1097-2765(00)80303-2.
Article
CAS
PubMed
Google Scholar
Solari F, Bourbon-Piffaut A, Masse I, Payrastre B, Chan AM, Billaud M. The human tumour suppressor PTEN regulates longevity and dauer formation in Caenorhabditis elegans. Oncogene. 2005;24(1):20–7. https://doi.org/10.1038/sj.onc.1207978.
Article
CAS
PubMed
Google Scholar
Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, et al. A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol. 2006;1(12):780–90. https://doi.org/10.1021/cb600352f.
Article
CAS
PubMed
Google Scholar
Li Y, Prasad A, Jia Y, Roy SG, Loison F, Mondal S, et al. Pretreatment with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor SF1670 augments the efficacy of granulocyte transfusion in a clinically relevant mouse model. Blood. 2011;117(24):6702–13. https://doi.org/10.1182/blood-2010-09-309864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 1998;12(16):2488–98. https://doi.org/10.1101/gad.12.16.2488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, et al. The emerging multiple roles of nuclear Akt. Biochim Biophys Acta Mol Cell Res. 2012;1823(12):2168–78. https://doi.org/10.1016/j.bbamcr.2012.08.017.
Article
CAS
Google Scholar
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74. https://doi.org/10.1016/j.cell.2007.06.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning BD, Toker A. AKT/PKB Signaling: navigating the network. Cell. 2017;169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther. 2003;2(11):1093–103.
CAS
PubMed
Google Scholar
Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J. 2005;385(Pt 2):399–408. https://doi.org/10.1042/BJ20041140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo H, Lo PK, Li Y, Loison F, Green S, Wang J, et al. Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination. Proc Natl Acad Sci U S A. 2011;108(16):6486–91. https://doi.org/10.1073/pnas.1019062108.
Article
PubMed
PubMed Central
Google Scholar
Jo H, Mondal S, Tan D, Nagata E, Takizawa S, Sharma AK, et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A. 2012;109(26):10581–6. https://doi.org/10.1073/pnas.1202810109.
Article
PubMed
PubMed Central
Google Scholar
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51. https://doi.org/10.1002/j.1460-2075.1996.tb01045.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions. Cel Signal. 2016;28(8):887–95. https://doi.org/10.1016/j.cellsig.2016.03.009.
Article
CAS
Google Scholar
Zarse K, Schmeisser S, Birringer M, Falk E, Schmoll D, Ristow M. Differential effects of resveratrol and SRT1720 on lifespan of adult Caenorhabditis elegans. Horm Metab Res. 2010;42(12):837–9. https://doi.org/10.1055/s-0030-1265225.
Article
CAS
PubMed
Google Scholar
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–6. https://doi.org/10.1038/nature06261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990;265(28):17174–9. https://doi.org/10.1016/S0021-9258(17)44885-X.
Article
CAS
PubMed
Google Scholar
Evason K, Collins JJ, Huang C, Hughes S, Kornfeld K. Valproic acid extends Caenorhabditis elegans lifespan. Aging Cell. 2008;7(3):305–17. https://doi.org/10.1111/j.1474-9726.2008.00375.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forthun RB, Sengupta T, Skjeldam HK, Lindvall JM, McCormack E, Gjertsen BT, et al. Cross-species functional genomic analysis identifies resistance genes of the histone deacetylase inhibitor valproic acid. Plos One. 2012;7(11):e48992. https://doi.org/10.1371/journal.pone.0048992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards C, Canfield J, Copes N, Rehan M, Lipps D, Bradshaw PC. D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY). 2014;6(8):621–44.
Article
Google Scholar
Zhang M, Poplawski M, Yen K, Cheng H, Bloss E, Zhu X, et al. Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling. Plos Biol. 2009;7(11):e1000245. https://doi.org/10.1371/journal.pbio.1000245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006;26(1):28–38. https://doi.org/10.1128/MCB.26.1.28-38.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YP, Catbagan CC, Bowler JT, Gokey T, Goodwin ND, Guliaev AB, et al. Evaluation of benzoic acid derivatives as sirtuin inhibitors. Bioorg Med Chem Lett. 2014;24(1):349–52. https://doi.org/10.1016/j.bmcl.2013.11.004.
Article
CAS
PubMed
Google Scholar
Félix MA, Duveau F. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol. 2012;10(1):59.
Article
PubMed
PubMed Central
Google Scholar
Schulenburg H, Felix MA. The natural biotic environment of Caenorhabditis elegans. Genetics. 2017;206(1):55–86. https://doi.org/10.1534/genetics.116.195511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker HG. Self-compatibility and establishment after “long distance” dispersal. Evolution. 1955;9:347–8.
Google Scholar
Uller T. Developmental plasticity and the evolution of parental effects. Trends Ecol Evol. 2008;23(8):432–8. https://doi.org/10.1016/j.tree.2008.04.005.
Article
PubMed
Google Scholar
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient sensing and response drive developmental progression in Caenorhabditis elegans. Bioessays. 2020;42(3):e1900194. https://doi.org/10.1002/bies.201900194.
Article
PubMed
Google Scholar
Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. 2010;329(5996):1201–5. https://doi.org/10.1126/science.1191241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R, et al. Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science. 2001;293(5532):1142–6. https://doi.org/10.1126/science.1062322.
Article
CAS
PubMed
Google Scholar
Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72(1):73–84. https://doi.org/10.1016/0092-8674(93)90051-Q.
Article
CAS
PubMed
Google Scholar
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://doi.org/10.1016/j.cmet.2014.03.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211–4. https://doi.org/10.1126/science.1227166.
Article
CAS
PubMed
Google Scholar
Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem. 2001;276(42):38341–4. https://doi.org/10.1074/jbc.C100316200.
Article
CAS
PubMed
Google Scholar
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737–49. https://doi.org/10.1042/bj20021321.
Article
PubMed
PubMed Central
Google Scholar
Boffa LC, Vidali G, Mann RS, Allfrey VG. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem. 1978;253(10):3364–6. https://doi.org/10.1016/S0021-9258(17)34804-4.
Article
CAS
PubMed
Google Scholar
Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20(24):6969–78. https://doi.org/10.1093/emboj/20.24.6969.
Article
CAS
PubMed
PubMed Central
Google Scholar
González A, Hall MN, Lin S-C, Hardie DG. AMPK and TOR: The yin and yang of cellular nutrient sensing and growth control. Cell Metabolism. 2020;31(3):472–92. https://doi.org/10.1016/j.cmet.2020.01.015.
Article
CAS
PubMed
Google Scholar
Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab. 2010;298(4):E751–60. https://doi.org/10.1152/ajpendo.00745.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee J, Bruckbauer A, Zemel MB. Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Metabolism. 2016;65(11):1679–91. https://doi.org/10.1016/j.metabol.2016.06.011.
Article
CAS
PubMed
Google Scholar
Burns AR, Kwok TC, Howard A, Houston E, Johanson K, Chan A, et al. High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat Protoc. 2006;1(4):1906–14. https://doi.org/10.1038/nprot.2006.283.
Article
CAS
PubMed
Google Scholar
Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. Plos One. 2010;5(1):e8758.
Article
PubMed
PubMed Central
Google Scholar
Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153(1):228–39. https://doi.org/10.1016/j.cell.2013.02.035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burns AR, Wallace IM, Wildenhain J, Tyers M, Giaever G, Bader GD, et al. A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat Chem Biol. 2010;6(7):549–57. https://doi.org/10.1038/nchembio.380.
Article
CAS
PubMed
Google Scholar
Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF. 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R936–44. https://doi.org/10.1152/ajpregu.00319.2002.
Article
CAS
PubMed
Google Scholar
Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408(3):297–315. https://doi.org/10.1042/BJ20070797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340–51. https://doi.org/10.1074/jbc.M109.088682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams S, Pathak P, Shao H, Lok JB, Pires-daSilva A. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci Rep. 2019;9(1):483. https://doi.org/10.1038/s41598-018-37036-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horsthemke B. A critical view on transgenerational epigenetic inheritance in humans. Nat Commun. 2018;9(1):2973. https://doi.org/10.1038/s41467-018-05445-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stiernagle T: Maintenance of C. elegans. WormBook 2006:1-11.
Robles P, Turner A, Zuco G, Adams S, Paganopoulou P, Winton M, Hill B, Kache V, Bateson C, Pires da Silva A. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. figshare. 2021. https://doi.org/10.6084/m9.figshare.14381744.v1.
Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature. 2007;447(7144):545–9. https://doi.org/10.1038/nature05904.
Article
CAS
PubMed
Google Scholar
Zuco G, Kache V, Robles P, Chaudhuri J, Hill B, Bateson C, Pires da Silva A. Sensory neurons control heritable adaptation to stress through germline reprogramming. bioRxiv. 2018:406033. https://doi.org/10.1101/406033.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. https://doi.org/10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swedlow JR: Chapter 17 - quantitative fluorescence microscopy and image deconvolution. In: Methods in Cell Biology. Edited by Sluder G, Wolf DE, vol. 114: Academic Press; 2013: 407-426.
Swedlow JR, Hu K, Andrews PD, Roos DS, Murray JM. Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proc Natl Acad Sci U S A. 2002;99(4):2014–9.
Phillips CM, McDonald KL, Dernburg AF. Cytological analysis of meiosis in Caenorhabditis elegans. Methods Mol Biol. 2009;558:171–95. https://doi.org/10.1007/978-1-60761-103-5_11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong D-E, Lee Y, Lee S-JV. Western blot analysis of C. elegans proteins. In: Huang LE, editor. Hypoxia: Methods and Protocols. New York: Springer New York; 2018. p. 213–25.
Chapter
Google Scholar
Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16(7):565–6. https://doi.org/10.1038/s41592-019-0470-3.
Article
CAS
PubMed
Google Scholar