Heller AJ. Classification and epidemiology of tinnitus. Otolaryngol Clin N Am. 2003; 36(2):239–48.
Article
Google Scholar
Gallus S, Lugo A, Garavello W, Bosetti C, Santoro E, Colombo P, Perin P, La Vecchia C, Langguth B. Prevalence and determinants of tinnitus in the Italian adult population. Neuroepidemiology. 2015; 45(1):12–19.
Article
PubMed
Google Scholar
Møller AR. Tinnitus: presence and future. Tinnitus Pathophysiol Treat. 2007;3–16. https://doi.org/10.1016/s0079-6123(07)66001-4.
Langguth B, Landgrebe M, Kleinjung T, Sand GP, Hajak G. Tinnitus and depression. World J Biol Psychiatry. 2011; 12(7):489–500. https://doi.org/10.3109/15622975.2011.575178.
Article
PubMed
Google Scholar
Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus — triggers, mechanisms and treatment. Nat Rev Neurol. 2016; 12(3):150–60. https://doi.org/10.1038/nrneurol.2016.12.
Article
PubMed
PubMed Central
Google Scholar
Kaltenbach JA, Zhang J, Finlayson P. Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res. 2005; 206(1):200–26.
Article
PubMed
Google Scholar
Tzounopoulos T. Mechanisms of synaptic plasticity in the dorsal cochlear nucleus: plasticity-induced changes that could underlie tinnitus. Am J Audiol. 2008;17(2). https://doi.org/10.1044/1059-0889(2008/07-0030).
Baizer JS, Manohar S, Paolone NA, Weinstock N, Salvi RJ. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity. Brain Res. 2012; 1485:40–53. https://doi.org/10.1016/j.brainres.2012.03.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shore SE, Wu C. Mechanisms of noise-induced tinnitus: insights from cellular studies. Neuron. 2019; 103(1):8–20. https://doi.org/10.1016/j.neuron.2019.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brozoski TJ, Bauer CA, Caspary DM. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci. 2002; 22(6):2383–90. https://doi.org/10.1523/jneurosci.22-06-02383.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finlayson PG, Kaltenbach JA. Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res. 2009; 256(1-2):104–17. https://doi.org/10.1016/j.heares.2009.07.006.
Article
PubMed
PubMed Central
Google Scholar
Pilati N, Large C, Forsythe ID, Hamann M. Acoustic over-exposure triggers burst firing in dorsal cochlear nucleus fusiform cells. Hear Res. 2012; 283(1-2):98–106. https://doi.org/10.1016/j.heares.2011.10.008.
Article
PubMed
PubMed Central
Google Scholar
Li S, Choi V, Tzounopoulos T. Pathogenic plasticity of kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci. 2013; 110(24):9980–5. https://doi.org/10.1073/pnas.1302770110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manzoor NF, Gao Y, Licari F, Kaltenbach JA. Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res. 2013; 295:114–23. https://doi.org/10.1016/j.heares.2012.04.003.
Article
CAS
PubMed
Google Scholar
Gao Y, Manzoor N, Kaltenbach J. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure. Hear Res. 2016; 341:31–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaltenbach JA, Manz R. The neurobiology of noise-induced tinnitus. In: Noise-induced hearing loss. Springer: 2012. p. 151–75. https://doi.org/10.1007/978-1-4419-9523-0_8.
Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GMG, Tzounopoulos T. Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci. 2011; 108(18):7601–6. https://doi.org/10.1073/pnas.1100223108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience. 2009; 164(2):747–59.
Article
CAS
PubMed
Google Scholar
Wu C, Martel DT, Shore SE. Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus. J Neurosci. 2016; 36(6):2068–73. https://doi.org/10.1523/jneurosci.3960-15.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heeringa AN, Wu C, Chung C, West M, Martel D, Liberman L, Liberman MC, Shore SE. Glutamatergic projections to the cochlear nucleus are redistributed in tinnitus. Neuroscience. 2018; 391:91–103. https://doi.org/10.1016/j.neuroscience.2018.09.008.
Article
CAS
PubMed
Google Scholar
Han K, Mun S, Sohn S, Piao X, Park I, Chang M. Axonal sprouting in the dorsal cochlear nucleus affects gap-prepulse inhibition following noise exposure. Int J Mol Med. 2019. https://doi.org/10.3892/ijmm.2019.4316.
Malfatti T, Ciralli B, Hilscher MM, Edwards SJ, Kullander K, Leao RN, Leao KE. Using cortical neuron markers to target cells in the dorsal cochlear nucleus. Eneuro. 2021;0413–202020. https://doi.org/10.1523/eneuro.0413-20.2020.
Oertel D, Young ED. What’s a cerebellar circuit doing in the auditory system?. Trends Neurosci. 2004; 27(2):104–10. https://doi.org/10.1016/j.tins.2003.12.001.
Article
CAS
PubMed
Google Scholar
Brozoski TJ, Wisner KW, Sybert LT, Bauer CA. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model. J Assoc Res Otolaryngol. 2011; 13(1):55–66. https://doi.org/10.1007/s10162-011-0290-3.
Article
PubMed
PubMed Central
Google Scholar
Luo H, Zhang X, Nation J, Pace E, Lepczyk L, Zhang J. Tinnitus suppression by electrical stimulation of the rat dorsal cochlear nucleus. Neurosci Lett. 2012; 522(1):16–20. https://doi.org/10.1016/j.neulet.2012.05.072.
Article
CAS
PubMed
Google Scholar
van Zwieten G, Jahanshahi A, van Erp ML, Temel Y, Stokroos RJ, Janssen MLF, Smit JV. Alleviation of tinnitus with high-frequency stimulation of the dorsal cochlear nucleus: a rodent study. Trends Hear. 2019; 23:233121651983508. https://doi.org/10.1177/2331216519835080.
Article
Google Scholar
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of g protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci. 2007; 104(12):5163–8. https://doi.org/10.1073/pnas.0700293104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu H, Roth BL. DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol. 2014; 18(1):007. https://doi.org/10.1093/ijnp/pyu007.
Google Scholar
Ochiishi T, Yamauchi T, Terashima T. Regional differences between the immunohistochemical distribution of ca2+/calmodulin-dependent protein kinase ii α and β isoforms in the brainstem of the rat. Brain Res. 1998; 790(1-2):129–40. https://doi.org/10.1016/s0006-8993(98)00058-4.
Article
CAS
PubMed
Google Scholar
Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H. A mesoscale connectome of the mouse brain. Nature. 2014; 508(7495):207–14. https://doi.org/10.1038/nature13186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci. 2006; 120(1):188–95. https://doi.org/10.1037/0735-7044.120.1.188.
Article
PubMed
Google Scholar
Longenecker RJ, Galazyuk AV. Methodological optimization of tinnitus assessment using prepulse inhibition of the acoustic startle reflex. Brain Res. 2012; 1485:54–62. https://doi.org/10.1016/j.brainres.2012.02.067.
Article
CAS
PubMed
Google Scholar
Longenecker RJ, Galazyuk AV. Variable effects of acoustic trauma on behavioral and neural correlates of tinnitus in individual animals. Front Behav Neurosci. 2016;10. https://doi.org/10.3389/fnbeh.2016.00207.
Longenecker RJ, Kristaponyte I, Nelson GL, Young JW, Galazyuk AV. Addressing variability in the acoustic startle reflex for accurate gap detection assessment. Hear Res. 2018; 363:119–35. https://doi.org/10.1016/j.heares.2018.03.013.
Article
PubMed
PubMed Central
Google Scholar
Park SY, Kim MJ, Park JM, Park SN. A mouse model of tinnitus using gap prepulse inhibition of the acoustic startle in an accelerated hearing loss strain. Otol Neurotology. 2020; 41(4):516–25. https://doi.org/10.1097/mao.0000000000002573.
Article
Google Scholar
Yang G, Lobarinas E, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res. 2007; 226(1-2):244–53. https://doi.org/10.1016/j.heares.2006.06.013.
Article
CAS
PubMed
Google Scholar
Winne J, Boerner BC, Malfatti T, Brisa E, Doerl J, Nogueira I, Leão KE, Leão RN. Anxiety-like behavior induced by salicylate depends on age and can be prevented by a single dose of 5-MeO-DMT. Exp Neurol. 2020; 326:113175. https://doi.org/10.1016/j.expneurol.2020.113175.
Article
CAS
PubMed
Google Scholar
Guettier J-M, Gautam D, Scarselli M, de Azua IR, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, et al. A chemical-genetic approach to study g protein regulation of β cell function in vivo. Proc Natl Acad Sci. 2009; 106(45):19197–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017; 357(6350):503–7. https://doi.org/10.1126/science.aan2475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jendryka M, Palchaudhuri M, Ursu D, van der Veen B, Liss B, Kätzel D, Nissen W, Pekcec A. Pharmacokinetic and pharmacodynamic actions of clozapine-n-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Sci Rep. 2019;9(1). https://doi.org/10.1038/s41598-019-41088-2.
Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, Weinshenker D. The DREADD agonist clozapine n-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8(1). https://doi.org/10.1038/s41598-018-22116-z.
Cho J, Ryu S, Lee S, Kim J, Kim H-I. Optimizing clozapine for chemogenetic neuromodulation of somatosensory cortex. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-62923-x.
MacLaren DAA, Browne RW, Shaw JK, Radhakrishnan SK, Khare P, España RA, Clark SD. Clozapine n-oxide administration produces behavioral effects in long–evans rats: implications for designing DREADD experiments. Eneuro. 2016; 3(5):0219–162016. https://doi.org/10.1523/eneuro.0219-16.2016.
Article
Google Scholar
Asokan MM, Williamson RS, Hancock KE, Polley DB. Sensory overamplification in layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic damage. Nat Commun. 2018;9(1). https://doi.org/10.1038/s41467-018-04852-y.
Sanchez TG. “Epidemics” of tinnitus in the 21st century: preparing our children and grandchildren. Braz J Otorhinolaryngol. 2014; 80(1):3–4. https://doi.org/10.5935/1808-8694.20140003.
Article
PubMed
Google Scholar
Nagaraj MK, Bhaskar A, Prabhu P. Assessment of auditory working memory in normal hearing adults with tinnitus. Eur Arch Oto-Rhino-Laryngology. 2019; 277(1):47–54. https://doi.org/10.1007/s00405-019-05658-4.
Article
Google Scholar
Joo JW, Jeong YJ, Han MS, Chang Y-S, Rah YC, Choi J. Analysis of auditory brainstem response change, according to tinnitus duration, in patients with tinnitus with normal hearing. J Int Adv Otol. 2020; 16(2):190–6. https://doi.org/10.5152/iao.2020.7951.
Article
PubMed
PubMed Central
Google Scholar
Mahboubi H, Oliaei S, Kiumehr S, Dwabe S, Djalilian HR. The prevalence and characteristics of tinnitus in the youth population of the United States. Laryngoscope. 2013; 123(8):2001–8. https://doi.org/10.1002/lary.24015.
Article
PubMed
Google Scholar
Gilles A, Goelen S, Van de Heyning P. Tinnitus. Otol Neurotology. 2014; 35(3):401–6. https://doi.org/10.1097/mao.0000000000000248.
Article
Google Scholar
Nemholt S, Schmidt JH, Wedderkopp N, Baguley DM. A cross-sectional study of the prevalence and factors associated with tinnitus and/or hyperacusis in children. Ear Hear. 2019; 41(2):344–55. https://doi.org/10.1097/aud.0000000000000759.
Article
Google Scholar
Bauer CA, Brozoski TJ. Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol. 2001; 2(1):54–64. https://doi.org/10.1007/s101620010030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heffner HE, Harrington IA. Tinnitus in hamsters following exposure to intense sound. Hear Res. 2002; 170(1-2):83–95. https://doi.org/10.1016/s0378-5955(02)00343-x.
Article
PubMed
Google Scholar
Basta D, Ernest A. Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices. Neurosci Lett. 2004; 368(3):297–302. https://doi.org/10.1016/j.neulet.2004.07.030.
Article
CAS
PubMed
Google Scholar
Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009; 29(45):14077–85. https://doi.org/10.1523/jneurosci.2845-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Xiong H, Ou Y, Xu Y, Pang J, Lai L, Zheng Y. Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci. 2016; 37(9):1511–6. https://doi.org/10.1007/s10072-016-2603-0.
Article
PubMed
Google Scholar
Coomber B, Berger JI, Kowalkowski VL, Shackleton TM, Palmer AR, Wallace MN. Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. Eur J Neurosci. 2014; 40(2):2427–41. https://doi.org/10.1111/ejn.12580.
Article
PubMed
PubMed Central
Google Scholar
Zagólski O, Strek P. Tinnitus pitch and minimum masking levels in different etiologies. Int J Audiol. 2014; 53(7):482–9. https://doi.org/10.3109/14992027.2014.893377.
Article
PubMed
Google Scholar
Berger JI, Coomber B, Shackleton TM, Palmer AR, Wallace MN. A novel behavioural approach to detecting tinnitus in the guinea pig. J Neurosci Methods. 2013; 213(2):188–95. https://doi.org/10.1016/j.jneumeth.2012.12.023.
Article
PubMed
PubMed Central
Google Scholar
Martel DT, Pardo-Garcia TR, Shore SE. Dorsal cochlear nucleus fusiform-cell plasticity is altered in salicylate-induced tinnitus. Neuroscience. 2019; 407:170–81. https://doi.org/10.1016/j.neuroscience.2018.08.035.
Article
CAS
PubMed
Google Scholar
Richardson BD, Brozoski TJ, Ling LL, Caspary DM. Targeting inhibitory neurotransmission in tinnitus. Brain Res. 2012; 1485:77–87. https://doi.org/10.1016/j.brainres.2012.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu C, Shore SE. Inhibitory interneurons in a brainstem circuit adjust their inhibitory motifs to process multimodal input. J Physiol. 2020; 599(2):631–45. https://doi.org/10.1113/jp280741.
Article
PubMed
CAS
Google Scholar
Lu H-W, Trussell LO. Spontaneous activity defines effective convergence ratios in an inhibitory circuit. J Neurosci. 2016; 36(11):3268–80. https://doi.org/10.1523/jneurosci.3499-15.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzounopoulos T, Kim Y, Oertel D, Trussell LO. Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci. 2004; 7(7):719–25. https://doi.org/10.1038/nn1272.
Article
CAS
PubMed
Google Scholar
Rogan SC, Roth BL. Remote control of neuronal signaling. Pharmacol Rev. 2011; 63(2):291–315. https://doi.org/10.1124/pr.110.003020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godfrey DA, Kiang NYS, Norris BE. Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol. 1975; 162(2):247–68. https://doi.org/10.1002/cne.901620206.
Article
CAS
PubMed
Google Scholar
Nelken I, Young ED. Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type iv units to narrowband and wideband stimuli. J Neurophys. 1994; 71(6):2446–62. https://doi.org/10.1152/jn.1994.71.6.2446.
Article
CAS
Google Scholar
Paolini AG, Cotterill EL, Bairaktaris D, Clark GM. Muscimol suppression of the dorsal cochlear nucleus modifies frequency tuning in rats. Brain Res. 1998; 785(2):309–16. https://doi.org/10.1016/s0006-8993(97)01404-2.
Article
CAS
PubMed
Google Scholar
Yajima Y, Hayashi Y. Gabaergic inhibition upon auditory response properties of neurons in the dorsal cochlear nucleus of the rat. Exp Brain Res. 1990; 81(3):581–8. https://doi.org/10.1007/bf02423507.
Article
CAS
PubMed
Google Scholar
Kaltenbach JA. Summary of evidence pointing to a role of the dorsal cochlear nucleus in the etiology of tinnitus. Acta Otolaryngol. 2006; 126(sup556):20–6. https://doi.org/10.1080/03655230600895309.
Article
Google Scholar
Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, Ridder DD, Ferrucci R, Langguth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Schecklmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017; 128(1):56–92. https://doi.org/10.1016/j.clinph.2016.10.087.
Article
PubMed
Google Scholar
Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Lazzaro VD, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen J-P, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol. 2020; 131(2):474–528. https://doi.org/10.1016/j.clinph.2019.11.002.
Article
PubMed
Google Scholar
Valsamis B, Schmid S. Habituation and prepulse inhibition of acoustic startle in rodents. J Visualized Exp. 2011;(55). https://doi.org/10.3791/3446.
Norena AJ, Eggermont JJ. Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. NeuroReport. 2006; 17(6):559–63. https://doi.org/10.1097/00001756-200604240-00001.
Article
PubMed
Google Scholar
Sturm JJ, Zhang-Hooks Y-X, Roos H, Nguyen T, Kandler K. Noise trauma-induced behavioral gap detection deficits correlate with reorganization of excitatory and inhibitory local circuits in the inferior colliculus and are prevented by acoustic enrichment. J Neurosci. 2017; 37(26):6314–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan L, Zhang Z, Wang H, Li C, Xing Y, Yin S, Chen Z, Wang J. Pre-exposure to lower-level noise mitigates cochlear synaptic loss induced by high-level noise. Front Syst Neurosci. 2020;14. https://doi.org/10.3389/fnsys.2020.00025.
Malfatti T. LabScripts. Gitlab. 2021. https://gitlab.com/malfatti/LabScripts. Accessed 25 Mar 2022.
Ioanas H-I. Gentoo Linux for Neuroscience-a replicable, flexible, scalable, rolling-release environment that provides direct access to development software. Res Ideas Outcomes. 2017; 3:12095.
Article
Google Scholar
Siegle JH, Hale GJ, Newman JP, Voigts J. Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Curr Opin Neurobiol. 2015; 32:53–9. https://doi.org/10.1016/j.conb.2014.11.004.
Article
CAS
PubMed
Google Scholar
Malfatti T. SciScripts. 2021. https://doi.org/10.5281/ZENODO.4045872.
Geier M. Sounddevice. PyPI repository. 2015. https://pypi.org/project/sounddevice/. Accessed 25 Mar 2022.
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020; 17:261–72. https://doi.org/10.1038/s41592-019-0686-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Fernández del Río J, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature. 2020; 585:357–62. https://doi.org/10.1038/s41586-020-2649-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caswell TA, Droettboom M, Lee A, Hunter J, de Andrade ES, Firing E, Hoffmann T, Klymak J, Stansby D, Varoquaux N, Nielsen JH, Root B, May R, Elson P, Seppänen JK, Dale D, Lee J-J, McDougall D, Straw A, Hobson P, Gohlke C, Yu TS, Ma E, Vincent AF, Silvester S, Moad C, Kniazev N, hannah, Ernest E, Ivanov P. Matplotlib/matplotlib: REL: V3.3.2. 2020. https://doi.org/10.5281/zenodo.4030140.
Yger P, Marre O. SpyKING CIRCUS. PyPI repository. 2019. https://pypi.org/project/spyking-circus/. Accessed 25 Mar 2022.
Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, Tolias AS, Solomon S, Buzsáki G, Carandini M, Harris KD. Spike sorting for large, dense electrode arrays. Nat Neurosci. 2016; 19(4):634–41. https://doi.org/10.1038/nn.4268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parras GG, Nieto-Diego J, Carbajal GV, Valdés-Baizabal C, Escera C, Malmierca MS. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat Commun. 2017; 8(1):2148.
Article
PubMed
PubMed Central
CAS
Google Scholar