Siomi MC, Sato K, Pezic D, Aravin AA: PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011, 12: 246-258. 10.1038/nrm3089.
Article
CAS
PubMed
Google Scholar
Pek JW, Patil VS, Kai T: piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev Growth Differ. 2012, 54: 66-77. 10.1111/j.1440-169X.2011.01316.x.
Article
CAS
PubMed
Google Scholar
Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC: Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 2006, 20: 2214-2222. 10.1101/gad.1454806.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD: A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006, 313: 320-324. 10.1126/science.1129333.
Article
CAS
PubMed
Google Scholar
Aravin AA, Hannon GJ, Brennecke J: The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007, 318: 761-764. 10.1126/science.1146484.
Article
CAS
PubMed
Google Scholar
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007, 128: 1089-1103. 10.1016/j.cell.2007.01.043.
Article
CAS
PubMed
Google Scholar
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science. 2007, 315: 1587-1590. 10.1126/science.1140494.
Article
CAS
PubMed
Google Scholar
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF: A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007, 129: 69-82. 10.1016/j.cell.2007.03.026.
Article
CAS
PubMed
Google Scholar
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler EL, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD: Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 2009, 137: 509-521. 10.1016/j.cell.2009.04.027.
Article
CAS
PubMed Central
PubMed
Google Scholar
Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ: Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009, 137: 522-535. 10.1016/j.cell.2009.03.040.
Article
CAS
PubMed Central
PubMed
Google Scholar
Eddy EM: Germ plasm and the differentiation of the germ cell line. Int Rev Cytol. 1975, 43: 229-280. 10.1016/S0074-7696(08)60070-4.
Article
CAS
PubMed
Google Scholar
Juliano C, Wang J, Lin H: Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet. 2011, 45: 447-469. 10.1146/annurev-genet-110410-132541.
Article
CAS
PubMed
Google Scholar
Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z: Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol. 2009, 11: 652-658. 10.1038/ncb1872.
Article
CAS
PubMed Central
PubMed
Google Scholar
Siomi MC, Mannen T, Siomi H: How does the royal family of Tudor rule the PIWI-interacting RNA pathway?. Genes Dev. 2010, 24: 636-646. 10.1101/gad.1899210.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC: Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 2009, 28: 3820-3831. 10.1038/emboj.2009.365.
Article
CAS
PubMed Central
PubMed
Google Scholar
Patil VS, Kai T: Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Curr Biol. 2010, 20: 724. 30-10.1016/j.cub.2010.02.046.
Article
PubMed
Google Scholar
Hosokawa M, Shoji M, Kitamura K, Tanaka T, Noce T, Chuma S, Nakatsuji N: Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol. 2007, 301: 38-52. 10.1016/j.ydbio.2006.10.046.
Article
CAS
PubMed
Google Scholar
Strasser MJ, Mackenzie NC, Dumstrei K, Nakkrasae LI, Stebler J, Raz E: Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development. BMC Dev Biol. 2008, 8: 58-10.1186/1471-213X-8-58.
Article
PubMed Central
PubMed
Google Scholar
Smith JM, Bowles J, Wilson M, Teasdale RD, Koopman P: Expression of the Tudor-related gene Tdrd5 during development of the male germline in mice. Gene Expr Patterns. 2004, 4: 701-705. 10.1016/j.modgep.2004.04.002.
Article
CAS
PubMed
Google Scholar
Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA: Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 2009, 23: 1749-1762. 10.1101/gad.1814809.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tanaka T, Hosokawa M, Vagin VV, Reuter M, Hayashi E, Mochizuki AL, Kitamura K, Yamanaka H, Kondoh G, Okawa K, Kuramochi-Miyagawa S, Nakano T, Sachidanandam R, Hannon GJ, Pillai RS, Nakatsuji N, Chuma S: Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci U S A. 2011, 108: 10579-10584. 10.1073/pnas.1015447108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anantharaman V, Zhang D, Aravind L: OST-HTH: a novel predicted RNA-binding domain. Biol Direct. 2010, 5: 13-10.1186/1745-6150-5-13.
Article
PubMed Central
PubMed
Google Scholar
Callebaut I, Mornon JP: LOTUS, a new domain associated with small RNA pathways in the germline. Bioinformatics. 2010, 26: 1140-1144. 10.1093/bioinformatics/btq122.
Article
CAS
PubMed
Google Scholar
Lim AK, Kai T: Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2007, 104: 6714-6719. 10.1073/pnas.0701920104.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu L, Qi H, Wang J, Lin H: PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development. 2011, 138: 1863-1873. 10.1242/dev.059287.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anand A, Kai T: The Tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J. 2012, 31: 870-882. 10.1038/emboj.2011.449.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, Weng Z, Theurkauf WE, Zamore PD: Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol Cell. 2011, 44: 572-584. 10.1016/j.molcel.2011.10.011.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liang L, Diehl-Jones W, Lasko P: Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development. 1994, 120: 1201-1211.
CAS
PubMed
Google Scholar
Hay B, Ackerman L, Barbel S, Jan LY, Jan YN: Identification of a component of Drosophila polar granules. Development. 1988, 103: 625-640.
CAS
PubMed
Google Scholar
Lasko PF, Ashburner M: Posterior localization of Vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 1990, 4: 905-921. 10.1101/gad.4.6.905.
Article
CAS
PubMed
Google Scholar
Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, Wilhelm JE, Murphy TD, Levis RW, Matunis E, Srivali N, Hoskins RA, Spradling AC: The Carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics. 2007, 175: 1505-1531. 10.1534/genetics.106.065961.
Article
CAS
PubMed Central
PubMed
Google Scholar
McKearin DM, Spradling AC: bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev. 1990, 4: 2242-2251. 10.1101/gad.4.12b.2242.
Article
CAS
PubMed
Google Scholar
de Cuevas M, Spradling AC: Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development. 1998, 125: 2781-2789.
CAS
PubMed
Google Scholar
Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noce T, Nakatsuji N: Tdrd1/Mtr-1, a Tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci U S A. 2006, 103: 15894-15899. 10.1073/pnas.0601878103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS: Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol. 2009, 16: 639-646. 10.1038/nsmb.1615.
Article
CAS
PubMed
Google Scholar
Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chujo T, Suzuki T, Hata K, Martin SL, Noce T, Kuramochi-Miyagawa S, Nakano T, Sasaki H, Pillai RS, Nakatsuji N, Chuma S: The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell. 2009, 17: 775-787. 10.1016/j.devcel.2009.10.012.
Article
CAS
PubMed
Google Scholar
Wang J, Saxe JP, Tanaka T, Chuma S, Lin H: Mili interacts with Tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol. 2009, 19: 640-644. 10.1016/j.cub.2009.02.061.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yabuta Y, Ohta H, Abe T, Kurimoto K, Chuma S, Saitou M: TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J Cell Biol. 2011, 192: 781-795. 10.1083/jcb.201009043.
Article
CAS
PubMed Central
PubMed
Google Scholar
Olivieri D, Sykora MM, Sachidanandam R, Mechtler K, Brennecke J: An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 2010, 29: 3301-3317. 10.1038/emboj.2010.212.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lachke SA, Alkuraya FS, Kneeland SC, Ohn T, Aboukhalil A, Howell GR, Saadi I, Cavallesco R, Yue Y, Tsai AC, Nair KS, Cosma MI, Smith RS, Hodges E, Alfadhli SM, Al-Hajeri A, Shamseldin HE, Behbehani A, Hannon GJ, Bulyk ML, Drack AV, Anderson PJ, John SW, Maas RL: Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science. 2011, 331: 1571-1576. 10.1126/science.1195970.
Article
CAS
PubMed Central
PubMed
Google Scholar
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, Toth KF: Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 2013, 27: 390-399. 10.1101/gad.209841.112.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vasileva A, Tiedau D, Firooznia A, Muller-Reichert T, Jessberger R: Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol. 2009, 19: 630-639. 10.1016/j.cub.2009.02.047.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hartenstein AY, Rugendorff A, Tepass U, Hartenstein V: The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development. 1992, 116: 1203-1220.
CAS
PubMed
Google Scholar
Clegg NJ, Frost DM, Larkin MK, Subrahmanyan L, Bryant Z, Ruohola-Baker H: maelstrom is required for an early step in the establishment of Drosophila oocyte polarity: posterior localization of grk mRNA. Development. 1997, 124: 4661-4671.
CAS
PubMed
Google Scholar
Styhler S, Nakamura A, Swan A, Suter B, Lasko P: vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development. 1998, 125: 1569-1578.
CAS
PubMed
Google Scholar
Gillespie DE, Berg CA: Homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DE-H family of RNA-dependent ATPases. Genes Dev. 1995, 9: 2495-2508. 10.1101/gad.9.20.2495.
Article
CAS
PubMed
Google Scholar
Gonzalez-Reyes A, Elliott H, St Johnston D: Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes. Development. 1997, 124: 4927-4937.
CAS
PubMed
Google Scholar
Schupbach T, Wieschaus E: Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 1991, 129: 1119-1136.
CAS
PubMed Central
PubMed
Google Scholar
Wilson JE, Connell JE, Macdonald PM: aubergine enhances oskar translation in the Drosophila ovary. Development. 1996, 122: 1631-1639.
CAS
PubMed
Google Scholar
Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H: A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998, 12: 3715-3727. 10.1101/gad.12.23.3715.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cox DN, Chao A, Lin H: piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development. 2000, 127: 503-514.
CAS
PubMed
Google Scholar
Spradling AC, Rubin GM: Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982, 218: 341-347. 10.1126/science.6289435.
Article
CAS
PubMed
Google Scholar
Van Doren M, Williamson AL, Lehmann R: Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol. 1998, 8: 243-246. 10.1016/S0960-9822(98)70091-0.
Article
CAS
PubMed
Google Scholar
Lim AK, Tao L, Kai T: piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline. J Cell Biol. 2009, 186: 333-342. 10.1083/jcb.200904063.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pek JW, Lim AK, Kai T: Drosophila Maelstrom ensures proper germline stem cell lineage differentiation by repressing microRNA-7. Dev Cell. 2009, 17: 417-424. 10.1016/j.devcel.2009.07.017.
Article
CAS
PubMed
Google Scholar
Handler D, Olivieri D, Novatchkova M, Gruber FS, Meixner K, Mechtler K, Stark A, Sachidanandam R, Brennecke J: A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 2011, 30: 3977-3993. 10.1038/emboj.2011.308.
Article
CAS
PubMed Central
PubMed
Google Scholar
Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, Seitz H, Zamore PD, Weng Z, Theurkauf WE: The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009, 138: 1137-1149. 10.1016/j.cell.2009.07.014.
Article
CAS
PubMed Central
PubMed
Google Scholar
Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE: Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell. 2007, 12: 45-55. 10.1016/j.devcel.2006.12.001.
Article
CAS
PubMed
Google Scholar
Liu M, Lim TM, Cai Y: The Drosophila female germline stem cell lineage acts to spatially restrict DPP function within the niche. Sci Signal. 2010, 3: ra57-10.1126/scisignal.2000740.
Article
PubMed
Google Scholar
Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS: Small RNAs derived from snoRNAs. RNA. 2009, 15: 1233-1240. 10.1261/rna.1528909.
Article
CAS
PubMed Central
PubMed
Google Scholar