Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science (80- ). 2009;323:1304–7. https://doi.org/10.1126/science.1165706.
Article
CAS
Google Scholar
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900. https://doi.org/10.1038/nm.1972.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soriano-Sarabia N, Archin NM, Bateson R, Dahl NP, Crooks AM, Kuruc JAD, et al. Peripheral Vγ9Vδ2 T cells are a novel reservoir of latent HIV infection. PLoS Pathog. 2015;11 https://doi.org/10.1371/journal.ppat.1005201.
Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science (80- ). 2007;316:1912–5. https://doi.org/10.1126/science.1141453.
Article
CAS
Google Scholar
Mariyanna L, Priyadarshini P, Hofmann-Sieber H, Krepstakies M, Walz N, Grundhoff A, et al. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase. PLoS One. 2012;7 https://doi.org/10.1371/journal.pone.0031576.
Qu X, Wang P, Ding D, Li L, Wang H, Ma L, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013;41:7771–82. https://doi.org/10.1093/nar/gkt571.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. https://doi.org/10.1038/srep02510.
Article
PubMed
PubMed Central
Google Scholar
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A. 2014;111:11461–6. https://doi.org/10.1073/pnas.1405186111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology. 2015;12:22. https://doi.org/10.1186/s12977-015-0150-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15:481–9. https://doi.org/10.1016/j.celrep.2016.03.042.
Article
PubMed
CAS
Google Scholar
De Silva Feelixge HS, Stone D, Pietz HL, Roychoudhury P, Greninger AL, Schiffer JT, et al. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy. Antivir Res. 2016;126:90–8. https://doi.org/10.1016/j.antiviral.2015.12.007.
Article
PubMed
CAS
Google Scholar
Wang G, Zhao N, Berkhout B, Das AT. A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep ElsevierCompany. 2016;17:2819–26. https://doi.org/10.1016/j.celrep.2016.11.057.
Article
CAS
Google Scholar
Josefsson L, von Stockenstrom S, Faria NR, Sinclair E, Bacchetti P, Killian M, et al. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc Natl Acad Sci. 2013;110:E4987–96. https://doi.org/10.1073/pnas.1308313110.
Article
PubMed
CAS
Google Scholar
Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, et al. HIV-1 genetic variation resulting in the development of new quasispecies continues to be encountered in the peripheral blood of well-suppressed patients. PLoS One. 2016;11 https://doi.org/10.1371/journal.pone.0155382.
Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc Natl Acad Sci U S A. 2014;111:13475–80. https://doi.org/10.1073/pnas.1406663111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pinkevych M, Cromer D, Tolstrup M, Grimm AJ, Cooper DA, Lewin SR, et al. HIV reactivation from latency after treatment interruption occurs on average every 5-8 days—implications for HIV remission. PLoS Pathog. 2015;11:e1005000. https://doi.org/10.1371/journal.ppat.1005000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91. https://doi.org/10.1038/nbt.3437. Nature Publishing Group
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie S, Shen B, Zhang C, Huang X, Zhang Y. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One. 2014;9:e100448. https://doi.org/10.1371/journal.pone.0100448. Khodursky AB, editor
Article
PubMed
PubMed Central
Google Scholar
Zhu LJ. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Front Biol (Beijing). 2015;10:289–96. https://doi.org/10.1007/s11515-015-1366-y.
Article
CAS
Google Scholar
Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 2016:1–6. https://doi.org/10.1038/gt.2016.41.
Yin C, Zhang T, Li F, Yang F, Putatunda R, Young W-B, et al. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. AIDS. 2016;30:1163–74. https://doi.org/10.1097/QAD.0000000000001079.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li G, Piampongsant S, Faria NR, Voet A, Pineda-Peña A-C, Khouri R, et al. An integrated map of HIV genome-wide variation from a population perspective. Retrovirology. 2015;12:18. https://doi.org/10.1186/s12977-015-0148-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol. 2014;32:1262–7. https://doi.org/10.1038/nbt.3026. Nature Publishing Group
Article
PubMed
PubMed Central
CAS
Google Scholar
Pessôa R, Loureiro P, Esther Lopes M, Carneiro-Proietti ABF, Sabino EC, Busch MP, et al. Ultra-deep sequencing of HIV-1 near full-length and partial proviral genomes reveals high genetic diversity among Brazilian blood donors. PLoS One. 2016;11:e0152499. https://doi.org/10.1371/journal.pone.0152499. Kaderali L, editor
Article
PubMed
PubMed Central
CAS
Google Scholar
Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9:727–8. https://doi.org/10.1038/nm880.
Article
PubMed
CAS
Google Scholar
Crooks AM, Bateson R, Cope AB, Dahl NP, Griggs MK, Kuruc JAD, et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J Infect Dis. 2015;212:1361–5. https://doi.org/10.1093/infdis/jiv218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reeves DB, Duke ER, Hughes SM, Prlic M, Hladik F, Schiffer JT. Anti-proliferative therapy for HIV cure: a compound interest approach. Sci Rep. 2017;7:4011. https://doi.org/10.1038/s41598-017-04160-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spragg C, De Silva Feelixge H, Jerome KR. Cell and gene therapy strategies to eradicate HIV reservoirs. Curr Opin HIV AIDS. 2016;11:442–9. https://doi.org/10.1097/COH.0000000000000284.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther. 2016;24:522–6. https://doi.org/10.1038/mt.2016.24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep. 2016; https://doi.org/10.1038/srep22555.
Pinkevych M, Kent SJ, Tolstrup M, Lewin SR, Cooper DA, Søgaard OS, et al. Modeling of experimental data supports HIV reactivation from latency after treatment interruption on average once every 5–8 days. PLOS Pathog. 2016;12:e1005740. https://doi.org/10.1371/journal.ppat.1005740. Swanstrom R, editor
Article
PubMed
PubMed Central
CAS
Google Scholar
Hill AL, Rosenbloom DIS, Siliciano JD, Siliciano RF. Insufficient evidence for rare activation of latent HIV in the absence of reservoir-reducing interventions. PLOS Pathog. 2016;12:e1005679. https://doi.org/10.1371/journal.ppat.1005679. Swanstrom R, editor
Article
PubMed
PubMed Central
CAS
Google Scholar
Hernandez-Vargas EA. Modeling kick-kill strategies toward HIV cure. Front Immunol. 2017; https://doi.org/10.3389/fimmu.2017.00995.
Jerome KR. Disruption or excision of provirus as an approach to HIV cure. AIDS Patient Care STDs. 2016;30:551–5. https://doi.org/10.1089/apc.2016.0232.
Article
PubMed
PubMed Central
Google Scholar
Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR. Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol. 2012;86:8920–36. https://doi.org/10.1128/JVI.00052-12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stone D, Kiem HP, Jerome KR. Targeted gene disruption to cure HIV. Curr Opin HIV AIDS. 2013;8:217–23. https://doi.org/10.1097/COH.0b013e32835f736c.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roychoudhury P, De Silva Feelixge HS, Pietz HL, Stone D, Jerome KR, Schiffer JT. Pharmacodynamics of anti-HIV gene therapy using viral vectors and targeted endonucleases. J Antimicrob Chemother. 2016:dkw104. https://doi.org/10.1093/jac/dkw104.
Lebbink RJ, De Jong DCM, Wolters F, Kruse EM, Van Ham PM, Wiertz EJHJ, et al. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/srep41968. Nature Publishing Group
Article
CAS
Google Scholar
Brodin J, Zanini F, Thebo L, Lanz C, Bratt G, Neher RA, et al. Establishment and stability of the latent HIV-1 DNA reservoir. elife. 2016;5 https://doi.org/10.7554/eLife.18889.
Kearney MF, Spindler J, Shao W, Yu S, Anderson EM, O’Shea A, et al. Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog. 2014;10 https://doi.org/10.1371/journal.ppat.1004010.
Kearney MF, Wiegand A, Shao W, McManus WR, Bale MJ, Luke B, et al. Ongoing HIV replication during ART reconsidered. Open Forum Infect Dis. 2017;4 https://doi.org/10.1093/ofid/ofx173.
Rosenbloom DIS, Hill AL, Rabi SA, Siliciano RF, Nowak MA. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat Med. 2012;18:1378–85. https://doi.org/10.1038/nm.2892.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Pond SLK, et al. Lorenzo-Redondo et al. reply. Nature. 2017;551:E10. https://doi.org/10.1038/nature24635.
Article
PubMed
CAS
Google Scholar
Yin L, Hu S, Mei S, Sun H, Xu F, Li J, et al. CRISPR/Cas9 inhibits multiple steps of HIV-1 infection. Hum Gene Ther. 2018; https://doi.org/10.1089/hum.2018.018.
Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther. 2017;25:1168–86. https://doi.org/10.1016/j.ymthe.2017.03.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
PubMed
PubMed Central
CAS
Google Scholar
Crooks GE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90. https://doi.org/10.1101/gr.849004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986;188:415–31. https://doi.org/10.1016/0022-2836(86)90165-8.
Article
PubMed
CAS
Google Scholar
Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, et al. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol. 2014;10:e1003806. https://doi.org/10.1371/journal.pcbi.1003806.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82 https://doi.org/10.18637/jss.v082.i13.
Holm SA. Simple sequentially Rejective multiple test procedure. Scand J Stat. 1979;6:65–70. https://doi.org/10.2307/4615733.
Article
Google Scholar
Jaafoura S, De Goër De Herve MG, Hernandez-Vargas EA, Hendel-Chavez H, Abdoh M, Mateo MC, et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+memory T cells. Nat Commun 2014;5. https://doi.org/10.1038/ncomms6407.
Besson GJ, Lalama CM, Bosch RJ, Gandhi RT, Bedison MA, Aga E, et al. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin Infect Dis. 2014;59:1312–21. https://doi.org/10.1093/cid/ciu585.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DIS, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155:540–51. https://doi.org/10.1016/j.cell.2013.09.020. Elsevier Inc
Article
PubMed
PubMed Central
CAS
Google Scholar