Dobell C. Antony van Leeuwenhoek and his “Little Animals.” 1932. doi:https://doi.org/10.1038/130679a0.
Kim JT, Boo SM, Zakryś B. Floristic and taxonomic accounts of the genus Euglena (Euglenophyceae) from Korean fresh waters. Algae. 1998;13:173–97.
Google Scholar
Gojdics M. The genus Euglena. American Association for the Advancement of Science; 1953. doi:https://doi.org/10.1126/science.120.3124.799-a.
Zakryś B, Walne PL. Floristic, taxonomic and phytogeographic studies of green Euglenophyta from the Southeastern United States, with emphasis on new and rare species. Algol Stud für Hydrobiol Suppl Vol. 1994;72:71–114.
Zakryś B. The nuclear DNA level as a potential taxonomic character in Euglena Ehr. (Euglenophyceae). Algol Stud für Hydrobiol Suppl Vol. 1988;:483–504.
Buetow DE. The biology of Euglena: Academic Press; 1968;49.
McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol. 2001;37:951–9. https://doi.org/10.1046/j.1529-8817.2001.01126.x.
Article
Google Scholar
Dragoş N, Péterfi LŞ, Popescu C. Comparative fine structure of pellicular cytoskeleton in Euglena Ehrenberg. Arch Protistenkd. 1997;148:277–85. https://doi.org/10.1016/S0003-9365(97)80008-5.
Article
Google Scholar
Daiker V, Lebert M, Richter P, Häder D-P. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis. Planta. 2010;231:1229–36. https://doi.org/10.1007/s00425-010-1126-9.
Article
CAS
PubMed
Google Scholar
van der Horst MA, Hellingwerf KJ. Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res. 2004;37:13–20. https://doi.org/10.1021/ar020219d.
Article
CAS
PubMed
Google Scholar
Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012;17:230–7. https://doi.org/10.1016/j.tplants.2012.01.007.
Article
CAS
PubMed
Google Scholar
Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002;415:1047–51. https://doi.org/10.1038/4151047a.
Article
CAS
PubMed
Google Scholar
Masuda S. Light detection and signal transduction in the BLUF photoreceptors. Plant Cell Physiol. 2013;54:171–9. https://doi.org/10.1093/pcp/pcs173.
Article
CAS
PubMed
Google Scholar
Richter PR, Schuster M, Lebert M, Streb C, Häder D-P. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy. Adv Sp Res. 2007;39:1218–24. https://doi.org/10.1016/J.ASR.2006.11.024.
Article
Google Scholar
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93. https://doi.org/10.1111/j.1550-7408.2012.00644.x.
Article
PubMed
PubMed Central
Google Scholar
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26:3060–5.
Article
CAS
PubMed
Google Scholar
O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, et al. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol BioSyst. 2015;11:2808–20. https://doi.org/10.1039/C5MB00319A.
Article
CAS
PubMed
Google Scholar
O’Neill EC, Trick M, Henrissat B, Field RA. Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci. 2015;6:84–93. https://doi.org/10.1016/J.PISC.2015.07.002.
Article
Google Scholar
Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics. 2016;17:182. https://doi.org/10.1186/s12864-016-2540-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore AN, McWatters DC, Hudson AJ, Russell AG. RNA-Seq employing a novel rRNA depletion strategy reveals a rich repertoire of snoRNAs in Euglena gracilis including box C/D and Ψ-guide RNAs targeting the modification of rRNA extremities. RNA Biol. 2018;15:1309–18. https://doi.org/10.1080/15476286.2018.1526561.
Article
PubMed
PubMed Central
Google Scholar
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–22. https://doi.org/10.1016/j.molbiopara.2014.05.007.
Article
CAS
PubMed
Google Scholar
Flegontov P, Votýpka J, Skalický T, Logacheva MDD, Penin AAA, Tanifuji G, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23:1787–93.
Article
CAS
PubMed
Google Scholar
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–72. https://doi.org/10.1016/j.cub.2015.11.055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol. 2016;209:64–75. https://doi.org/10.1016/j.molbiopara.2016.03.007.
Article
CAS
PubMed
Google Scholar
Langousis G, Hill KL. Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol. 2014;12:505–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perdomo D, Bonhivers M, Robinson D. The trypanosome flagellar pocket collar and its ring forming protein—TbBILBO1. Cell. 2016;5:9. https://doi.org/10.3390/cells5010009.
Article
CAS
Google Scholar
Kalb LC, Frederico YCA, Boehm C, Moreira CM do N, Soares MJ, Field MC. Conservation and divergence within the clathrin interactome of Trypanosoma cruzi. Sci Rep. 2016;6:31212. https://doi.org/10.1038/srep31212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the Achilles’ heel of membrane trafficking in trypanosomes. Curr Opin Microbiol. 2016;34:97–103. https://doi.org/10.1016/j.mib.2016.08.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hovel-Miner G, Mugnier MR, Goldwater B, Cross GAM, Papavasiliou FN. A conserved DNA repeat promotes selection of a diverse repertoire of Trypanosoma brucei surface antigens from the genomic archive. PLoS Genet. 2016;12:e1005994. https://doi.org/10.1371/journal.pgen.1005994.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devault A, Bañuls A-L. The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination. BMC Evol Biol. 2008;8:292. https://doi.org/10.1186/1471-2148-8-292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chamakh-Ayari R, Bras-Gonçalves R, Bahi-Jaber N, Petitdidier E, Markikou-Ouni W, Aoun K, et al. In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis. PLoS One. 2014;9:e92708. https://doi.org/10.1371/journal.pone.0092708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahapatra DM, Chanakya HN, Ramachandra TV. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol. 2013;25:855–65. https://doi.org/10.1007/s10811-013-9979-5.
Article
CAS
Google Scholar
Furuhashi T, Ogawa T, Nakai R, Nakazawa M, Okazawa A, Padermschoke A, et al. Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia. Metabolomics. 2015;11:175–83. https://doi.org/10.1007/s11306-014-0687-1.
Article
CAS
Google Scholar
Yamada K, Suzuki H, Takeuchi T, Kazama Y, Mitra S, Abe T, et al. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci Rep. 2016;6:26327. https://doi.org/10.1038/srep26327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miazek K, Iwanek W, Remacle C, Richel A, Goffin D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci. 2015;16:23929–69. https://doi.org/10.3390/ijms161023929.
Article
CAS
PubMed
PubMed Central
Google Scholar
RodrÍguez-Zavala JS, GarcÍa-GarcÍa JD, Ortiz-Cruz MA, Moreno-Sánchez R. Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis. J Environ Sci Heal Part A. 2007;42:1365–78. https://doi.org/10.1080/10934520701480326.
Article
CAS
Google Scholar
dos Santos Ferreira V, Rocchetta I, Conforti V, Bench S, Feldman R, Levin MJ, et al. Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene. 2007;389:136–45.
Article
PubMed
Google Scholar
Zeng M, Hao W, Zou Y, Shi M, Jiang Y, Xiao P, et al. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement “Euglena”. BMC Biotechnol. 2016;16:49. https://doi.org/10.1186/s12896-016-0279-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobáková E, Flegontov P, Skalický T, Lukeš J. Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol. 2015;7:3358–67. https://doi.org/10.1093/gbe/evv229.
Faktorová D, Dobáková E, Peña-Diaz P, Lukeš J. From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Research. 2016;5:392. doi:https://doi.org/10.12688/f1000research.8040.1.
Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, et al. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993;21:3537–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol. 2007;24:54–62. https://doi.org/10.1093/molbev/msl129.
Article
CAS
PubMed
Google Scholar
Maruyama S, Suzaki T, Weber AP, Archibald JM, Nozaki H. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol. 2011;11:105. https://doi.org/10.1186/1471-2148-11-105.
Article
PubMed
PubMed Central
Google Scholar
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. The origin of plastids. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:2675–85. https://doi.org/10.1098/rstb.2008.0050.
Article
CAS
Google Scholar
Dooijes D, Chaves I, Kieft R, Dirks-Mulder A, Martin W, Borst P. Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Res. 2000;28:3017–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stankiewicz AJ, Falchuk KH, Vallee BL. Composition and structure of zinc-deficient Euglena gracilis chromatin. Biochemistry. 1983;22:5150–6.
Article
CAS
PubMed
Google Scholar
Mazus B, Falchuk KH, Vallee BL. Histone formation, gene expression, and zinc deficiency in Euglena gracilis. Biochemistry. 1984;23:42–7.
Article
CAS
PubMed
Google Scholar
Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC. Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. In: Advances in experimental medicine and biology; 2017. p. 125–40. https://doi.org/10.1007/978-3-319-54910-1_7.
Book
Google Scholar
Schantz ML, Schantz R. Sequence of a cDNA clone encoding beta tubulin from Euglena gracilis. Nucleic Acids Res. 1989;17:6727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AP, Vaughan S, Gull K. Evolution of tubulin gene arrays in trypanosomatid parasites: genomic restructuring in Leishmania. BMC Genomics. 2006;7:261. https://doi.org/10.1186/1471-2164-7-261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levasseur PJ, Meng Q, Bouck GB. Tubulin genes in the algal protist Euglena gracilis. J Eukaryot Microbiol. 1994;41:468–77.
Milanowski R, Karnkowska A, Ishikawa T, Zakryś B. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Mol Biol Evol. 2014;31:584–93. https://doi.org/10.1093/molbev/mst227.
Article
CAS
PubMed
Google Scholar
Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. Intermediate introns in nuclear genes of euglenids – are they a distinct type? BMC Evol Biol. 2016;16:49.
Article
PubMed
PubMed Central
Google Scholar
Canaday J, Tessier LH, Imbault P, Paulus F. Analysis of Euglena gracilis alpha-, beta- and gamma-tubulin genes: introns and pre-mRNA maturation. Mol Gen Genomics. 2001;265:153–60.
Article
CAS
Google Scholar
Tessier L, Keller M, Chan RL, Fournier R, Weil J. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J. 1991;10:2621–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller M, Chan RL, Tessier L-H, Weil J-H, Imbault P. Post-transcriptional regulation by light of the biosynthesis of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Mol Biol. 1991;17:73–82. https://doi.org/10.1007/BF00036807.
Article
CAS
PubMed
Google Scholar
Rawson JR. The characterization of Euglena gracilis DNA by its reassociation kinetics. Biochim Biophys Acta. 1975;402:171–8.
Article
CAS
PubMed
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7. https://doi.org/10.1093/bioinformatics/btm071.
Article
CAS
PubMed
Google Scholar
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. https://doi.org/10.1186/1471-2105-6-31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mair G, Shi H, Li H, Djikeng A, Aviles HO, Bishop JR, et al. A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA. 2000;6:163–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–12.
Jackson AP, Quail MA, Berriman M. Insights into the genome sequence of a free-living kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa). BMC Genomics. 2008;9:594. https://doi.org/10.1186/1471-2164-9-594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–22.
Article
CAS
PubMed
Google Scholar
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–42. https://doi.org/10.1016/j.cell.2010.01.032.
Article
CAS
PubMed
Google Scholar
Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol. 2015;6:141. https://doi.org/10.3389/fmicb.2015.00141.
Article
PubMed
PubMed Central
Google Scholar
Araújo PR, Teixeira SM. Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review. Mem Inst Oswaldo Cruz. 2011;106:257–66.
Article
PubMed
Google Scholar
Montandon PE, Stutz E. Structure and expression of the Euglena nuclear gene coding for the translation elongation factor EF-1 alpha. Nucleic Acids Res. 1990;18:75–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. https://doi.org/10.1186/s13059-015-0721-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhomme F, et al. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science. 2012;337:463–6. https://doi.org/10.1126/science.1222753.
Article
CAS
PubMed
Google Scholar
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P. Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry. Mol Biol Evol. 2018;35:2198–204. https://doi.org/10.1093/molbev/msy121.
Article
PubMed
Google Scholar
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 2018;8:1523. https://doi.org/10.1038/s41598-017-18805-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. https://doi.org/10.1038/nature11681.
Article
CAS
PubMed
Google Scholar
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, et al. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. elife. 2017;6. https://doi.org/10.7554/eLife.23717.
Dunin-Horkawicz S, Lupas AN. Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol. 2010;397:1156–74. https://doi.org/10.1016/j.jmb.2010.02.031.
Article
CAS
PubMed
Google Scholar
Anantharaman V, Aravind L. Cache – a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci. 2000;25:535–7.
Article
CAS
PubMed
Google Scholar
Szöör B, Haanstra JR, Gualdrón-López M, Michels PA. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Curr Opin Microbiol. 2014;22:79–87. https://doi.org/10.1016/J.MIB.2014.09.006.
Article
PubMed
Google Scholar
Morales J, Hashimoto M, Williams TA, Hirawake-mogi H, Makiuchi T, Tsubouchi A, et al. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc R Soc B. 2016;283:20160520.
Article
PubMed
PubMed Central
Google Scholar
Güther MLS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res. 2014;13:2796–806. https://doi.org/10.1021/pr401209w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lonergan TA. Regulation of cell shape in Euglena. IV. Localization of actin, myosin and calmodulin. J Cell Sci. 1985;77:197–208.
CAS
PubMed
Google Scholar
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, Field MC. Architecture of a host-parasite interface: complex targeting mechanisms revealed through proteomics. Mol Cell Proteomics. 2015;14:1911–26. https://doi.org/10.1074/mcp.M114.047647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barsanti L, Passarelli V, Walne PL, Gualtieri P. The photoreceptor protein of Euglena. FEBS Lett. 2000;482:247–51.
Article
CAS
PubMed
Google Scholar
Venkatesh D, Boehm C, Barlow LD, Nankissoor NN, O’Reilly A, Kelly S, et al. Evolution of the endomembrane systems of trypanosomatids – conservation and specialisation. J Cell Sci. 2017;130:1421–34. https://doi.org/10.1242/jcs.197640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Q, Gheiratmand L, Chen Y, Lim TK, Zhang J, Li S, et al. A comparative proteomic analysis reveals a new bi-lobe protein required for bi-lobe duplication and cell division in Trypanosoma brucei. PLoS One. 2010;5:e9660. https://doi.org/10.1371/journal.pone.0009660.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryot Cell. 2012;11:761–72. https://doi.org/10.1128/EC.05287-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot Cell. 2013;12:356–67. https://doi.org/10.1128/EC.00326-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, et al. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol Biol Cell. 2015;26:3013–29. https://doi.org/10.1091/mbc.E15-04-0219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–62. https://doi.org/10.1093/nar/gkp851.
Article
CAS
PubMed
Google Scholar
Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol. 2011;18:56–60. https://doi.org/10.1038/nsmb.1946.
Article
CAS
PubMed
Google Scholar
Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol. 2016;8:2663–71.
Article
PubMed
PubMed Central
Google Scholar
Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, Chait BT, et al. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14:e1002365. https://doi.org/10.1371/journal.pbio.1002365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–58. https://doi.org/10.1016/j.cell.2014.01.049.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Archivio S, Wickstead B. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol. 2017;216:379–91. https://doi.org/10.1083/jcb.201608043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell. 2002;1:495–502.
Article
PubMed
PubMed Central
Google Scholar
David V, Flegontov P, Gerasimov E, Tanifuji G, Hashimi H, Logacheva MD, et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. MBio. 2015;6:1–12.
Article
Google Scholar
Pusnik M, Schmidt O, Perry AJJ, Oeljeklaus S, Niemann M, Warscheid B, et al. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol. 2011;21:1738–43.
Article
CAS
PubMed
Google Scholar
Zarsky V, Tachezy J, Dolezal P. Tom40 is likely common to all mitochondria. Curr Biol. 2012;22:R479–81.
Article
CAS
PubMed
Google Scholar
Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warscheid B, et al. Response to Zarsky et al. Curr Biol. 2012;22:R481–2.
Article
CAS
Google Scholar
Mani J, Meisinger C, Schneider A. Peeping at TOMs — diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol Biol Evol. 2016;33:337–51.
Article
CAS
PubMed
Google Scholar
Perez E, Lapaille M, Degand H, Cilibrasi L, Villavicencio-Queijeiro A, Morsomme P, et al. The mitochondrial respiratory chain of the secondary green alga Euglena shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion. 2014;19:338–49.
Article
CAS
PubMed
Google Scholar
Gomez-Silva B, Timko MP, Schiff JA. Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts. Planta. 1985;165:12–22. https://doi.org/10.1007/BF00392206.
Article
CAS
PubMed
Google Scholar
Kim D, Filtz MR, Proteau PJ. The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena. J Nat Prod. 2004;67:1067–9. https://doi.org/10.1021/np049892x.
Article
CAS
PubMed
Google Scholar
Eggimann G, Sweeney K, Bolt H, Rozatian N, Cobb S, Denny P. The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules. 2015;20:2775–85. https://doi.org/10.3390/molecules20022775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saint-Guily A, Schantz ML, Schantz R. Structure and expression of a cDNA encoding a histone H2A from Euglena. Plant Mol Biol. 1994;24:941–8.
Article
CAS
PubMed
Google Scholar
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32. https://doi.org/10.1038/nrg3185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutner SH, Zahalsky AC, Aaronson S, Baker H, Frank O. Culture media for Euglena. In: Methods in Cell Biology. Academic Press; 1966. p. 217–28. https://doi.org/10.1016/S0091-679X(08)62140-8.
Book
Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72. https://doi.org/10.1038/nbt.1511.
Article
CAS
PubMed
Google Scholar
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40. https://doi.org/10.1038/nmeth.3901.
Article
CAS
PubMed
Google Scholar
Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12 http://www.ncbi.nlm.nih.gov/pubmed/13986422.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9. https://doi.org/10.1038/nmeth.4197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obado S, Field MC, Chait BT, Rout MP. ‘High-efficiency isolation of nuclear envelope protein complexes from trypanosomes.’ Methods Mol Biol. 2016;1411:67–80.
Hornett EA, Wheat CW. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics. 2012;13:361. https://doi.org/10.1186/1471-2164-13-361.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Neil ST, Emrich SJ. Assessing de novo transcriptome assembly metrics for consistency and utility. BMC Genomics. 2013;14:465. https://doi.org/10.1186/1471-2164-14-465.
Article
PubMed
PubMed Central
Google Scholar
Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384–95. https://doi.org/10.1101/gr.170720.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9. https://doi.org/10.1093/bioinformatics/btq683.
Article
CAS
PubMed
Google Scholar
Simpson JT, Durbin R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 2012;22:549–56. https://doi.org/10.1101/gr.126953.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108:1513–8. https://doi.org/10.1073/pnas.1017351108.
Article
CAS
PubMed
Google Scholar
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–4. https://doi.org/10.1093/bioinformatics/btx153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7. https://doi.org/10.1093/bioinformatics/bts611.
Article
CAS
PubMed
Google Scholar
Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics. 2013;14(Suppl 1):S7. https://doi.org/10.1186/1471-2164-14-S1-S7.
Article
PubMed
PubMed Central
Google Scholar
Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Research. 2015;4. doi:https://doi.org/10.12688/f1000research.6924.1.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. https://doi.org/10.1371/journal.pone.0112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015;43:e78. https://doi.org/10.1093/nar/gkv227.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky995.
Conesa A, Götz S, García-gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6. https://doi.org/10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61. https://doi.org/10.1093/nar/gkw1092.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8. https://doi.org/10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5.
Article
CAS
PubMed
Google Scholar
Stöver BC, Müller KF. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics. 2010;11:7. https://doi.org/10.1186/1471-2105-11-7.
Article
PubMed
PubMed Central
Google Scholar
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9. https://doi.org/10.1093/bioinformatics/btr703.
Article
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–7 http://www.ncbi.nlm.nih.gov/pubmed/10827456.
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinforma Appl NOTE. 2009;25:1972–3. https://doi.org/10.1093/bioinformatics/btp348.
Article
CAS
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):W182–5. https://doi.org/10.1093/nar/gkm321.
Article
PubMed
PubMed Central
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–71. https://doi.org/10.1038/nprot.2007.131.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. https://doi.org/10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
Hiller K, Grote A, Scheer M, Münch R, Jahn D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004;32(WEB SERVER ISS):W375–9. https://doi.org/10.1093/nar/gkh378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999;8:978–84. https://doi.org/10.1110/ps.8.5.978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruley C, Dupierris V, Salvi D, Rolland N, Ferro M. AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci. 2012;3:205. https://doi.org/10.3389/fpls.2012.00205.
Article
PubMed
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22. https://doi.org/10.1093/nar/gkr483.
Article
CAS
PubMed
PubMed Central
Google Scholar