Gribble FM, Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277–99. https://doi.org/10.1146/annurev-physiol-021115-105439.
Article
CAS
PubMed
Google Scholar
Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CAM, Parker HE, et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology. 2012;153:3054–65. https://doi.org/10.1210/en.2011-2170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551:333–9. https://doi.org/10.1038/nature24489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glass LL, Calero-Nieto FJ, Jawaid W, Larraufie P, Kay RG, Göttgens B, et al. Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine. Mol Metab. 2017;6:1296–303. https://doi.org/10.1016/j.molmet.2017.07.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Böttcher G, Sjöberg J, Ekman R, Håkanson R, Sundler F. Peptide YY in the mammalian pancreas: immunocytochemical localization and immunochemical characterization. Regul Pept. 1993;43:115–30. https://doi.org/10.1016/0167-0115(93)90146-Y.
Article
PubMed
Google Scholar
Wierup N, Svensson H, Mulder H, Sundler F. The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept. 2002;107:63–9. https://doi.org/10.1016/S0167-0115(02)00067-8.
Article
CAS
PubMed
Google Scholar
Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997;11:2323–34. https://doi.org/10.1101/gad.11.18.2323.
Article
CAS
PubMed
PubMed Central
Google Scholar
May CL, Kaestner KH. Gut endocrine cell development. Mol Cell Endocrinol. 2010;323:70–5.
Article
CAS
PubMed
Google Scholar
Gierl MS, Karoulias N, Wende H, Strehle M, Birchmeier C. The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells. Genes Dev. 2006;20:2465–78. https://doi.org/10.1101/gad.381806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beucher A, Gjernes E, Collin C, Courtney M, Meunier A, Collombat P, et al. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. PLoS One. 2012;7:e36449. https://doi.org/10.1371/journal.pone.0036449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sander M, Neubuser A, Kalamaras J, Ee HC, Martin GR, German MS. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 1997;11:1662–73 http://www.ncbi.nlm.nih.gov/pubmed/9224716.
Article
CAS
PubMed
Google Scholar
Heller RS, Jenny M, Collombat P, Mansouri A, Tomasetto C, Madsen OD, et al. Genetic determinants of pancreatic epsilon-cell development. Dev Biol. 2005;286:217–24. https://doi.org/10.1016/j.ydbio.2005.06.041.
Article
CAS
PubMed
Google Scholar
Verbruggen V, Ek O, Georlette D, Delporte F, Von Berg V, Detry N, et al. The Pax6b homeodomain is dispensable for pancreatic endocrine cell differentiation in zebrafish. J Biol Chem. 2010;285:13863–73. https://doi.org/10.1074/jbc.M110.108019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsson LI, St-Onge L, Hougaard DM, Sosa-Pineda B, Gruss P. Pax 4 and 6 regulate gastrointestinal endocrine cell development. Mech Dev. 1998;79:153–9 http://www.ncbi.nlm.nih.gov/pubmed/10349628. Accessed 29 Jun 2017.
Article
CAS
PubMed
Google Scholar
Hill ME, Asa SL, Drucker DJ. Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol. 1999;13:1474–86 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10478839.
Article
CAS
PubMed
Google Scholar
Hartenstein V, Takashima S, Hartenstein P, Asanad S, Asanad K. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Dev Biol. 2017;431:36–47. https://doi.org/10.1016/j.ydbio.2017.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartenstein V, Martinez P. Structure, development and evolution of the digestive system. Cell Tissue Res. 2019;377:289–92. https://doi.org/10.1007/s00441-019-03102-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res. 2019;377:445–58. https://doi.org/10.1007/s00441-019-03093-9.
Article
PubMed
Google Scholar
Heller RS. The islets of Langerhans 2010;654:21–37. doi:https://doi.org/10.1007/978-90-481-3271-3.
Youson JH, Al-Mahrouki AA. Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fishes. Gen Comp Endocrinol. 1999;116:303–35. https://doi.org/10.1006/gcen.1999.7376.
Article
CAS
PubMed
Google Scholar
Arendt D. The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet. 2008;9:868–82. https://doi.org/10.1038/nrg2416.
Article
CAS
PubMed
Google Scholar
Kin K, Nnamani MC, Lynch VJ, Michaelides E, Wagner GP. Cell-type phylogenetics and the origin of endometrial stromal cells. Cell Rep. 2015;10:1398–409. https://doi.org/10.1016/j.celrep.2015.01.062.
Article
CAS
PubMed
Google Scholar
Arntfield ME, van der Kooy D. β-Cell evolution: how the pancreas borrowed from the brain: the shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. BioEssays. 2011;33:582–7.
Article
PubMed
Google Scholar
Tarifeño-Saldivia E, Lavergne A, Bernard A, Padamata K, Bergemann D, Voz MLML, et al. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol. 2017;15:21. https://doi.org/10.1186/s12915-017-0362-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation 2006;297:374–386. https://www.sciencedirect.com/science/article/pii/S0012160606007743?via%3Dihub. Accessed 21 Aug 2019.
Chen YH, Lu YF, Ko TY, Tsai MY, Lin CY, Lin CC, et al. Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev Dyn. 2009;238:1021–32.
Article
CAS
PubMed
Google Scholar
Flasse LCLC, Stern DGDG, Pirson JLJL, Manfroid I, Peers B, Voz MLMLML. The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Dev Biol. 2013;376:187–97. https://doi.org/10.1016/j.ydbio.2013.01.011.
Article
CAS
PubMed
Google Scholar
Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, et al. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol. 2013;376:171–86. https://doi.org/10.1016/j.ydbio.2013.01.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace KN, Akhter S, Smith EM, Lorent K, Pack M. Intestinal growth and differentiation in zebrafish. Mech Dev. 2005;122:157–73.
Article
CAS
PubMed
Google Scholar
Roy-Carson S, Natukunda K, Chou H, Pal N, Farris C, Schneider SQ, et al. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics. 2017;18:290. https://doi.org/10.1186/S12864-017-3653-2.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Li S, Huang X, Lu D, Liu X, Ko WH, et al. Identification and characterization of a motilin-like peptide and its receptor in teleost. Gen Comp Endocrinol. 2013;186:85–93.
Article
CAS
PubMed
Google Scholar
Delporte FM, Pasque V, Devos N, Manfroid I, Voz ML, Motte P, et al. Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC Dev Biol. 2008;8:53. https://doi.org/10.1186/1471-213X-8-53. PMID: 18485195; PMCID: PMC2409314.
Uyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Arensbergen J, García-Hurtado J, Moran I, Maestro MA, Xu X, Van de Casteele M, et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 2010;20:722–32. https://doi.org/10.1101/gr.101709.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 2003;17:2591–603. https://doi.org/10.1101/gad.269003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djiotsa J, Verbruggen V, Giacomotto J, Ishibashi M, Manning E, Rinkwitz S, et al. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC Dev Biol. 2012;12:37. https://doi.org/10.1186/1471-213X-12-37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohta Y, Kosaka Y, Kishimoto N, Wang J, Smith SB, Honig G, et al. Convergence of the insulin and serotonin programs in the pancreatic β-cell. Diabetes. 2011;60:3208–16. https://doi.org/10.2337/db10-1192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helker CSM, Mullapudi S-T, Mueller LM, Preussner J, Tunaru S, Skog O, et al. A whole organism small molecule screen identifies novel regulators of pancreatic endocrine development. Development. 2019;146:dev172569. https://doi.org/10.1242/dev.172569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yee NS, Lorent K, Pack M. Exocrine pancreas development in zebrafish. Dev Biol. 2005;284:84–101 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15963491.
Article
CAS
PubMed
Google Scholar
Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, et al. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nat Biotechnol. 2018;36:469–73. https://doi.org/10.1038/nbt.4124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, Damante G, et al. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet. 2008;4:e29. https://doi.org/10.1371/journal.pgen.0040029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardoso JC, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol. 2010;10:135. https://doi.org/10.1186/1471-2148-10-135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hort Y, Baker E, Sutherland GR, Shine J, Herzog H. Gene duplication of the human peptide YY gene (PYY) generated the pancreatic polypeptide gene (PPY) on chromosome 17q21.1. Genomics. 1995;26:77–83. https://doi.org/10.1016/0888-7543(95)80085-z.
Article
CAS
PubMed
Google Scholar
Sundström G, Larsson TA, Brenner S, Venkatesh B, Larhammar D. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. Gen Comp Endocrinol. 2008;155:705–16. https://doi.org/10.1016/J.YGCEN.2007.08.016.
Article
PubMed
Google Scholar
Biemar F, Argenton F, Schmidtke R, Epperlein S, Peers B, Driever W. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol. 2001;230:189–203. https://doi.org/10.1006/dbio.2000.0103.
Article
CAS
PubMed
Google Scholar
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419. https://doi.org/10.1126/science.1260419.
Article
CAS
PubMed
Google Scholar
Mutch DM, Anderle P, Fiaux M, Mansourian R, Vidal K, Wahli W, Williamson G, Roberts MA. Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics. 2004;17(1):11–20. https://doi.org/10.1152/physiolgenomics.00150.2003. PMID: 14679303.
Segerstolpe Å, Palasantza A, Eliasson P, Andersson E-M, Andréasson A-C, Sun X, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24:593–607. https://doi.org/10.1016/j.cmet.2016.08.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J. Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development. 2005;132:1093–104. https://doi.org/10.1242/dev.01644.
Article
CAS
PubMed
Google Scholar
Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, et al. Control of endodermal endocrine development by Hes-1. Nat Genet. 2000;24:36–44. https://doi.org/10.1038/71657.
Article
CAS
PubMed
Google Scholar
Falkmer S, Dafgård E, el-Salhy M, Engström W, Grimelius L, Zetterberg A. Phylogenetical aspects on islet hormone families: a minireview with particular reference to insulin as a growth factor and to the phylogeny of PYY and NPY immunoreactive cells and nerves in the endocrine and exocrine pancreas. Peptides. 1985;6(Suppl 3):315–20. https://doi.org/10.1016/0196-9781(85)90391-2.
Article
CAS
PubMed
Google Scholar
Youson JH. The agnathan enteropancreatic endocrine system: phylogenetic and ontogenetic histories, structure, and function1. Am Zool. 2000;40:179–99.
Google Scholar
Perillo M, Arnone MI. Characterization of insulin-like peptides (ILPs) in the sea urchin Strongylocentrotus purpuratus: insights on the evolution of the insulin family. Gen Comp Endocrinol. 2014;205:68–79. https://doi.org/10.1016/J.YGCEN.2014.06.014.
Article
CAS
PubMed
Google Scholar
Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS, Richmond CA, et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell. 2016;18:410–21. https://doi.org/10.1016/j.stem.2016.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y-J, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep. 2014;6:1046–58. https://doi.org/10.1016/j.celrep.2014.02.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet. 2012;44:406–12. https://doi.org/10.1038/ng.2215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thurner M, van de Bunt M, Torres JM, Mahajan A, Nylander V, Bennett AJ, et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. Elife. 2018;7. https://doi.org/10.7554/ELIFE.31977.
Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13. https://doi.org/10.1038/s41588-018-0241-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott Heller R, Stoffers DA, Liu A, Schedl A, Crenshaw EB, Madsen OD, et al. The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Dev Biol. 2004;268:123–34. https://doi.org/10.1016/j.ydbio.2003.12.008.
Article
CAS
PubMed
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8589427.
Article
CAS
PubMed
Google Scholar
Delporte FM, Pasque V, Devos N, Manfroid I, Voz ML, Motte P, Biemar F, Martial JA, Peers B. Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC Dev Biol. 2008 May 16;8:53. https://doi.org/10.1186/1471-213X-8-53. PMID: 18485195; PMCID: PMC24093.
Pauls S, Zecchin E, Tiso N, Bortolussi M, Argenton F. Function and regulation of zebrafish nkx2.2a during development of pancreatic islet and ducts. Dev Biol. 2007;304:875–90. https://doi.org/10.1016/j.ydbio.2007.01.024.
Article
CAS
PubMed
Google Scholar
Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9:171–81. https://doi.org/10.1038/nprot.2014.006.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638. Epub 2014 Sep 25. PMID: 25260700; PMCID: PMC4287950.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghaye AP, Bergemann D, Tarifeño-Saldivia E, Flasse LC, Von Berg V, Peers B, et al. Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biol. 2015;13:70. https://doi.org/10.1186/s12915-015-0179-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3:59–69.
Article
CAS
PubMed
Google Scholar
Mavropoulos A, Devos N, Biemar F, Zecchin E, Argenton F, Edlund H, et al. sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol. 2005;285:211–23. https://doi.org/10.1016/j.ydbio.2005.06.024.
Article
CAS
PubMed
Google Scholar
Flasse LC, Pirson JL, Stern DG, Von Berg V, Manfroid I, Peers B, et al. Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol. 2013;11:78. https://doi.org/10.1186/1741-7007-11-78.
Article
CAS
PubMed
PubMed Central
Google Scholar