Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem. 2017;292(16):6452–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong DE, Artan M, Seo K, Lee SJ. Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Front Genet. 2012;3:218.
Article
PubMed
PubMed Central
Google Scholar
Allen EN, Ren J, Zhang Y, Alcedo J. Sensory systems: their impact on C. elegans survival. Neuroscience. 2015;296:15–25.
Article
CAS
PubMed
Google Scholar
Murakami H, Murakami S. Serotonin receptors antagonistically modulate Caenorhabditis elegans longevity. Aging Cell. 2007;6(4):483–8.
Article
CAS
PubMed
Google Scholar
Chun L, Gong J, Yuan F, Zhang B, Liu H, Zheng T, et al. Metabotropic GABA signalling modulates longevity in C. elegans. Nat Commun. 2015;6:8828.
Article
CAS
PubMed
Google Scholar
Rivard L, Srinivasan J, Stone A, Ochoa S, Sternberg PW, Loer CM. A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. BMC Neurosci. 2010;11:22.
Article
PubMed
PubMed Central
Google Scholar
Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5(6):483–94.
Article
CAS
PubMed
Google Scholar
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.
Article
CAS
PubMed
Google Scholar
Chase DL, Pepper JS, Koelle MR. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci. 2004;7(10):1096–103.
Article
CAS
PubMed
Google Scholar
Suo S, Ishiura S, Van Tol HH. Dopamine receptors in C. elegans. Eur J Pharmacol. 2004;500(1-3):159–66.
Article
CAS
PubMed
Google Scholar
Sugiura M, Fuke S, Suo S, Sasagawa N, Van Tol HH, Ishiura S. Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. J Neurochem. 2005;94(4):1146–57.
Article
CAS
PubMed
Google Scholar
Hills T, Brockie PJ, Maricq AV. Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci. 2004;24(5):1217–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang DY, Yu YL, Li YX, Wang Y, Wang DY. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C-elegans. PLoS One. 2014;9(12):e115985.
Article
PubMed
PubMed Central
Google Scholar
Suo S, Culotti JG, Van Tol HH. Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J. 2009;28(16):2437–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen A, Vantipalli MC, Lithgow GJ. Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann N Y Acad Sci. 2006;1067:120–8.
Article
CAS
PubMed
Google Scholar
Uno M, Nishida E. Lifespan-regulating genes in C. elegans. Npj Aging Mech Dis. 2016;2:16010.
Article
PubMed
PubMed Central
Google Scholar
Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. 1998;282(5396):2028–33.
Article
CAS
PubMed
Google Scholar
Hughes SE, Huang C, Kornfeld K. Identification of mutations that delay somatic or reproductive aging of Caenorhabditis elegans. Genetics. 2011;189(1):341–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Raamsdonk JM, Meng Y, Camp D, Yang W, Jia XH, Benard C, et al. Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage. Genetics. 2010;185(2):559–U263.
Article
PubMed
PubMed Central
Google Scholar
Tissenbaum HA. Genetics, life span, health span, and the aging process in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2012;67(5):503–10.
Article
PubMed
Google Scholar
Richelson E, Souder T. Binding of antipsychotic drugs to human brain receptors - focus on newer generation compounds. Life Sci. 2000;68(1):29–39.
Article
CAS
PubMed
Google Scholar
Lopez-Munoz F, Alamo C. Active metabolites as antidepressant drugs: the role of norquetiapine in the mechanism of action of quetiapine in the treatment of mood disorders. Front Psychiatry. 2013;4:102.
Article
PubMed
PubMed Central
Google Scholar
Correa P, LeBoeuf B, Garcia LR. C. elegans dopaminergic D2-like receptors delimit recurrent cholinergic-mediated motor programs during a goal-oriented behavior. PLoS Genet. 2012;8(11):e1003015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lochrie MA, Mendel JE, Sternberg PW, Simon MI. Homologous and unique G-protein alpha subunits in the nematode Caenorhabditis-Elegans. Cell Regul. 1991;2(2):135–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suo S, Sasagawa N, Ishiura S. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem. 2003;86(4):869–78.
Article
CAS
PubMed
Google Scholar
Wei M, Fabrizio P, Hu J, Ge HY, Cheng C, Li L, et al. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008;4(1):e13.
Article
PubMed
PubMed Central
Google Scholar
Molin M, Yang JS, Hanzen S, Toledano MB, Labarre J, Nystrom T. Life span extension and H2O2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol Cell. 2011;43(5):823–33.
Article
CAS
PubMed
Google Scholar
Kang WK, Kim YH, Kang HA, Kwon KS, Kim JY. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. Elife. 2015;4:e09709.
Article
PubMed Central
Google Scholar
Schade MA, Reynolds NK, Dollins CM, Miller KG. Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network. Genetics. 2005;169(2):631–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Han JS, Kong J, Ji Y, Lv XC, Lee J, et al. Protein kinase A subunit balance regulates lipid metabolism in Caenorhabditis elegans and mammalian adipocytes. J Biol Chem. 2016;291(39):20315–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross RE, Bagchi S, Lu XY, Rubin CS. Cloning, characterization, and expression of the gene for the catalytic subunit of camp-dependent protein-kinase in Caenorhabditis-elegans - identification of highly conserved and unique isoforms generated by alternative splicing. J Biol Chem. 1990;265(12):6896–907.
Article
CAS
PubMed
Google Scholar
Lu XY, Gross RE, Bagchi S, Rubin CS. Cloning, structure, and expression of the gene for a novel regulatory subunit of camp-dependent protein-kinase in Caenorhabditis-elegans. J Biol Chem. 1990;265(6):3293–303.
Article
CAS
PubMed
Google Scholar
Nurrish S, Segalat L, Kaplan JM. Serotonin inhibition of synaptic transmission: G alpha(o) decreases the abundance of UNC-13 at release sites. Neuron. 1999;24(1):231–42.
Article
CAS
PubMed
Google Scholar
Miller KG, Emerson MD, Rand JB. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999;24(2):323–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen AT, Maher KN, Wani KA, Betts KE, Chase DL. Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics. 2011;188(3):579–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coughlan KA, Valentine RJ, Sudit BS, Allen K, Dagon Y, Kahn BB, et al. PKD1 Inhibits AMPK2 through phosphorylation of serine 491 and impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2016;291(11):5664–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang LQ, Barbosa TD, Massart J, Deshmukh AS, Lofgren L, Duque-Guimaraes DE, et al. Diacylglycerol kinase-delta regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics. Am J Physiol-Endoc M. 2016;310(1):E51–60.
Google Scholar
Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 2007;17(19):1646–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houthoofd K, Johnson TE, Vanfleteren JR. Dietary restriction in the nematode Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2005;60(9):1125–31.
Article
PubMed
Google Scholar
Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, Jacobson LA, et al. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C-elegans under dietary restriction. J Exp Biol. 2006;209(20):4129–39.
Article
CAS
PubMed
Google Scholar
Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998;95(22):13091–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang YZ, Yan FX, Feng ZP, Lazarovici P, Zheng WH. Signaling network of forkhead family of transcription factors (FOXO) in dietary restriction. Cells. 2020;9(1):100.
Article
CAS
Google Scholar
Takami G, Ota M, Nakashima A, Kaneko YS, Mori K, Nagatsu T, et al. Effects of atypical antipsychotics and haloperidol on PC12 cells: only aripiprazole phosphorylates AMP-activated protein kinase. J Neural Transm. 2010;117(10):1139–53.
Article
CAS
PubMed
Google Scholar
Ota A, Nakashima A, Kaneko YS, Mori K, Nagasaki H, Takayanagi T, et al. Effects of aripiprazole and clozapine on the treatment of glycolytic carbon in PC12 cells. J Neural Transm. 2012;119(11):1327–42.
Article
CAS
PubMed
Google Scholar
Ye XL, Linton JM, Schork NJ, Buck LB, Petrascheck M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell. 2014;13(2):206–15.
Article
CAS
PubMed
Google Scholar
Osuna-Luque J, Rodriguez-Ramos A, Gamez-del-Estal MD, Ruiz-Rubio M. Behavioral mechanisms that depend on dopamine and serotonin in Caenorhabditis elegans interact with the antipsychotics risperidone and aripiprazole. J Exp Neurosci. 2018;12:1179069518798628.
Article
PubMed
PubMed Central
Google Scholar
Lucanic M, Garrett T, Yu I, Calahorro F, Asadi Shahmirzadi A, Miller A, et al. Chemical activation of a food deprivation signal extends lifespan. Aging Cell. 2016;15(5):832–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raizen DM, Lee RYN, Avery L. Interacting genes required for pharyngeal excitation by motor-neuron MC in Caenorhabditis-elegans. Genetics. 1995;141(4):1365–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell. 2009;8(2):113–27.
Article
CAS
PubMed
Google Scholar
Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 2010;29(2):469–81.
Article
CAS
PubMed
Google Scholar
Pan B, Chen J, Lian J, Huang XF, Deng C. Unique effects of acute aripiprazole treatment on the dopamine D2 receptor downstream cAMP-PKA and Akt-GSK3beta signalling pathways in rats. PLoS One. 2015;10(7):e0132722.
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Jun H, Wu J, Liu J, Xu XZS. Olfactory perception of food abundance regulates dietary restriction-mediated longevity via a brain-to-gut signal. Nat Aging. 2021;1(3):255–68.
Article
PubMed
PubMed Central
Google Scholar
Petrascheck M, Ye XL, Buck LB. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature. 2007;450(7169):553–U12.
Article
CAS
PubMed
Google Scholar
Rangaraju S, Solis GM, Andersson SI, Gomez-Amaro RL, Kardakaris R, Broaddus CD, et al. Atypical antidepressants extend lifespan of Caenorhabditis elegans by activation of a non-cell-autonomous stress response. Aging Cell. 2015;14(6):971–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava D, Arya U, SoundaraRajan T, Dwivedi H, Kumar S, Subramaniam JR. Reserpine can confer stress tolerance and lifespan extension in the nematode C-elegans. Biogerontology. 2008;9(5):309–16.
Article
CAS
PubMed
Google Scholar
Miller HA, Huang S, Schaller ML, Dean ES, Tuckowski AM, Munneke AS, et al. Serotonin and dopamine modulate aging in response to food perception and availability. bioRxiv. 2021;2021.03.23.436516.
Donohoe DR, Aamodt EJ, Osborn E, Dwyer DS. Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors. Pharmacol Res. 2006;54(5):361–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weeks KR, Dwyer DS, Aamodt EJ. Antipsychotic drugs activate the C. elegans Akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci. 2010;1(6):463–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nasrallah HA, Newcomer JW, Risinger R, Du YC, Zummo J, Bose A, et al. Effect of aripiprazole lauroxil on metabolic and endocrine profiles and related safety considerations among patients with acute schizophrenia. J Clin Psychiat. 2016;77(11):1519.
Article
Google Scholar
Orsolini L, Tomasetti C, Valchera A, Vecchiotti R, Matarazzo I, Vellante F, et al. An update of safety of clinically used atypical antipsychotics. Expert Opin Drug Saf. 2016;15(10):1329–47.
Article
CAS
PubMed
Google Scholar
Mucci A, Piegari G, Galderisi S. Cognitive-enhancing effects of aripiprazole: a case report. Clin Pract Epidemiol Ment Health. 2008;4:24.
Article
PubMed
PubMed Central
Google Scholar
Koprivica V, Regardie K, Wolff C, Fernalld R, Murphy JJ, Kambayashi J, et al. Aripiprazole protects cortical neurons from glutamate toxicity. Eur J Pharmacol. 2011;651(1-3):73–6.
Article
CAS
PubMed
Google Scholar
De Deyn PP, Drenth AFJ, Kremer BP, Voshaar RCO, Van Dam D. Aripiprazole in the treatment of Alzheimer’s disease. Expert Opin Pharmacother. 2013;14(4):459–74.
Article
PubMed
Google Scholar