Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.
Article
CAS
PubMed
Google Scholar
McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007;26(22):3113–21.
Article
CAS
PubMed
Google Scholar
Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105–43.
Article
CAS
PubMed
Google Scholar
Miller AD, Curran T, Verma IM. c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell. 1984;36(1):51–60.
Article
CAS
PubMed
Google Scholar
Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2(12):1120–4.
Article
CAS
PubMed
Google Scholar
Boucherat O, Nadeau V, Berube-Simard FA, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development. 2015;142(21):3801.
Article
CAS
PubMed
Google Scholar
Parada C, Han D, Grimaldi A, Sarrion P, Park SS, Pelikan R, et al. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence. Development. 2015;142(21):3734–45.
CAS
PubMed
PubMed Central
Google Scholar
Dumesic PA, Scholl FA, Barragan DI, Khavari PA. Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol. 2009;185(3):409–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholl FA, Dumesic PA, Barragan DI, Harada K, Bissonauth V, Charron J, et al. Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Raf-induced hyperplasia. Dev Cell. 2007;12(4):615–29.
Article
CAS
PubMed
Google Scholar
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK signaling in regulation of renal differentiation. Int J Mol Sci. 2019;20(7):1779.
Article
CAS
PubMed Central
Google Scholar
Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.
Book
Google Scholar
Mao Y, Francis-West P, Irvine KD. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development. 2015;142(15):2574–85.
CAS
PubMed
PubMed Central
Google Scholar
Davidson AJ, Lewis P, Przepiorski A, Sander V. Turning mesoderm into kidney. Semin Cell Dev Biol. 2019;91:86–93.
Article
PubMed
Google Scholar
Zhang H, Bagherie-Lachidan M, Badouel C, Enderle L, Peidis P, Bremner R, et al. FAT4 fine-tunes kidney development by regulating RET signaling. Dev Cell. 2019;48(6):780–792 e784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurtzeborn K, Cebrian C, Kuure S. Regulation of renal differentiation by trophic factors. Front Physiol. 2018;9:1588.
Article
PubMed
PubMed Central
Google Scholar
Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuure S, Sariola H. Mouse models of congenital kidney anomalies. Adv Exp Med Biol. 2020;1236:109–36.
Article
CAS
PubMed
Google Scholar
Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3(2):169–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25(21):5214–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Hohenstein P, Kuure S. Embryonic kidney development, stem cells and the origin of Wilms tumor. Genes (Basel). 2021;12(2):318.
Article
CAS
Google Scholar
O’Brien LL. Nephron progenitor cell commitment: striking the right balance. Semin Cell Dev Biol. 2018:91:94–103.
Rumballe BA, Georgas KM, Combes AN, Ju AL, Gilbert T, Little MH. Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol. 2011;360(1):110–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell. 2014;29(2):188–202.
Article
CAS
PubMed
Google Scholar
Park JS, Ma W, O’Brien LL, Chung E, Guo JJ, Cheng JG, et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell. 2012;23(3):637–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindstrom NO, Carragher NO, Hohenstein P. The PI3K pathway balances self-renewal and differentiation of nephron progenitor cells through beta-catenin signaling. Stem Cell Reports. 2015;4(4):551–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawlor KT, Zappia L, Lefevre J, Park JS, Hamilton NA, Oshlack A, et al. Nephron progenitor commitment is a stochastic process influenced by cell migration. Elife. 2019;8:e41156.
Article
PubMed
PubMed Central
Google Scholar
Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol. 2004;271(1):98–108.
Article
CAS
PubMed
Google Scholar
Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, et al. Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 2005;16(7):1993–2002.
Article
CAS
PubMed
Google Scholar
Bohnenpoll T, Kispert A. Ureter growth and differentiation. Semin Cell Dev Biol. 2014;36:21–30.
Article
PubMed
Google Scholar
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development. 2017;144(17):3177–88.
CAS
PubMed
PubMed Central
Google Scholar
Lefevre JG, Short KM, Lamberton TO, Michos O, Graf D, Smyth IM, et al. Branching morphogenesis in the developing kidney is governed by rules that pattern the ureteric tree. Development. 2017;144(23):4377–85.
CAS
PubMed
Google Scholar
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken). 2020:303(10):2578–87.
Shakya R, Watanabe T, Costantini F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell. 2005;8(1):65–74.
Article
CAS
PubMed
Google Scholar
Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell. 2009;17(2):199–209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol. 2016;14(2):e1002382.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Jakobson M, Ola R, Gui Y, Kumar A, Sipila P, et al. Development of the urogenital system is regulated via the 3’UTR of GDNF. Sci Rep. 2019;9(1):5302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hida M, Omori S, Awazu M. ERK and p38 MAP kinase are required for rat renal development. Kidney Int. 2002;61(4):1252–62.
Article
CAS
PubMed
Google Scholar
Fisher CE, Michael L, Barnett MW, Davies JA. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development. 2001;128(21):4329–38.
Article
CAS
PubMed
Google Scholar
Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peranen J, et al. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet. 2014;10(3):e1004193.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ihermann-Hella A, Hirashima T, Kupari J, Kurtzeborn K, Li H, Kwon HN, et al. Dynamic MAPK/ERK activity sustains nephron progenitors through niche regulation and primes precursors for differentiation. Stem Cell Reports. 2018:11(4):912–28.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanchez-Ferras O, Pacis A, Sotiropoulou M, Zhang Y, Wang YC, Bourgey M, et al. A coordinated progression of progenitor cell states initiates urinary tract development. Nat Commun. 2021;12(1):2627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindstrom NO, De Sena BG, Tran T, Ransick A, Suh G, Guo J, et al. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev Cell. 2018;45(5):651–660 e654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, et al. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development. 2018;145(16):dev164038.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS. Single cell dissection of early kidney development: multilineage priming. Development. 2014;141(15):3093–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 2002;4(11):850–8.
Article
CAS
PubMed
Google Scholar
Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, et al. Cavin-3 dictates the balance between ERK and Akt signaling. Elife. 2013;2:e00905.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mah SP, Saueressig H, Goulding M, Kintner C, Dressler GR. Kidney development in cadherin-6 mutants: delayed mesenchyme-to-epithelial conversion and loss of nephrons. Dev Biol. 2000;223(1):38–53.
Article
CAS
PubMed
Google Scholar
Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, et al. Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet. 2010;19(24):4918–29.
Article
CAS
PubMed
Google Scholar
Reginensi A, Clarkson M, Neirijnck Y, Lu B, Ohyama T, Groves AK, et al. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum Mol Genet. 2011:20(6):1143–53.
Kumar S, Liu J, Pang P, Krautzberger AM, Reginensi A, Akiyama H, et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 2015;12(8):1325–38.
Article
CAS
PubMed
Google Scholar
Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8(2):229–39.
Article
CAS
PubMed
Google Scholar
Roskoski R Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res. 2019;142:151–68.
Article
CAS
PubMed
Google Scholar
Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009;41(12):1295–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuure S, Chi X, Lu B, Costantini F. The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development. 2010;137(12):1975–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007;6(5):391–403.
Article
CAS
PubMed
Google Scholar
Davies JA. The Kidney Development Database. Dev Genet. 1999;24(3-4):194–8.
Article
CAS
PubMed
Google Scholar
Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003;130(14):3175–85.
Article
CAS
PubMed
Google Scholar
O’Brien LL, Combes AN, Short KM, Lindstrom NO, Whitney PH, Cullen-McEwen LA, et al. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. Elife. 2018;7:e40392.
Article
PubMed
PubMed Central
Google Scholar
Rutledge EA, Parvez RK, Short KM, Smyth IM, McMahon AP. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev Biol. 2019;454(2):156–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishita M, Qiao S, Miyamoto M, Okinaka Y, Yamada M, Hashimoto R, et al. Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol. 2014;34(16):3096–105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.
Article
CAS
PubMed
Google Scholar
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdiscip Rev Dev Biol. 2012;1(5):693–713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Lin Y, Itaranta P, Yagi A, Vainio S. Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mech Dev. 2001;109(2):367–70.
Article
CAS
PubMed
Google Scholar
Rutledge EA, McMahon AP. Mutational analysis of genes with ureteric progenitor cell-specific expression in branching morphogenesis of the mouse kidney. Dev Dyn. 2020;249(6):765–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. the epithelial component of the embryo to develop. Genes Dev. 1992;6(12):2235–47.
Article
CAS
PubMed
Google Scholar
Hohenstein P, Pritchard-Jones K, Charlton J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 2015;29(5):467–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan X, Karner CM, Carroll TJ. Myc cooperates with beta-catenin to drive gene expression in nephron progenitor cells. Development. 2017;144(22):4173–82.
CAS
PubMed
PubMed Central
Google Scholar
Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21(1):53–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EMJ, et al. GFRa1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21(2):317–24.
Article
CAS
PubMed
Google Scholar
Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet. 2005;37(5):520–5.
Article
CAS
PubMed
Google Scholar
Kiyozumi D, Takeichi M, Nakano I, Sato Y, Fukuda T, Sekiguchi K. Basement membrane assembly of the integrin alpha8beta1 ligand nephronectin requires Fraser syndrome-associated proteins. J Cell Biol. 2012;197(5):677–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magella B, Adam M, Potter AS, Venkatasubramanian M, Chetal K, Hay SB, et al. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev Biol. 2018;434(1):36–47.
Article
CAS
PubMed
Google Scholar
Williere Y, Borschewski A, Patzak A, Nikitina T, Dittmayer C, Daigeler AL, et al. Caveolin 1 promotes renal water and salt reabsorption. Sci Rep. 2018;8(1):545.
Article
PubMed
PubMed Central
CAS
Google Scholar
He JZ, Yang BX. Aquaporins in renal diseases. Int J Mol Sci. 2019;20(2):366.
Article
PubMed Central
CAS
Google Scholar
Gill PS, Rosenblum ND. Control of murine kidney development by sonic hedgehog and its GLI effectors. Cell Cycle. 2006;5(13):1426–30.
Article
CAS
PubMed
Google Scholar
Sandilands A, Smith FJ, Lunny DP, Campbell LE, Davidson KM, MacCallum SF, et al. Generation and characterisation of keratin 7 (K7) knockout mice. PLoS One. 2013;8(5):e64404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Lee JW, Chou CL, Nair AV, Battistone MA, Paunescu TG, et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc Natl Acad Sci U S A. 2017;114(46):E9989–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RS, Machado S, et al. StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 2015;43(W1):W72–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.
Article
CAS
PubMed
Google Scholar
Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Gene Dev. 2001;15(16):2042–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dyson N. The regulation of E2F by pRB-family proteins. Gene Dev. 1998;12(15):2245–62.
Article
CAS
PubMed
Google Scholar
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53.
Article
CAS
PubMed
Google Scholar
Roy A, Al-Bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephro. 2015;10(2):305–24.
Article
CAS
Google Scholar
Guo Q, Wang Y, Tripathi P, Manda KR, Mukherjee M, Chaklader M, et al. Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J Am Soc Nephrol. 2015;26(1):149–59.
Article
CAS
PubMed
Google Scholar
Willecke R, Heuberger J, Grossmann K, Michos O, Schmidt-Ott K, Walentin K, et al. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney. Dev Biol. 2011;360(2):310–7.
Article
CAS
PubMed
Google Scholar
Wilson MZ, Ravindran PT, Lim WA, Toettcher JE. Tracing information flow from Erk to target gene induction reveals mechanisms of dynamic and combinatorial control. Mol Cell. 2017;67(5):757–769 e755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson HE, Toettcher JE. Signaling dynamics control cell fate in the early Drosophila embryo. Dev Cell. 2019;48(3):361–370 e363.
Article
CAS
PubMed
PubMed Central
Google Scholar
De S, Campbell C, Venkitaraman AR, Esposito A. Pulsatile MAPK signaling modulates p53 activity to control cell fate decisions at the G2 checkpoint for DNA damage. Cell Rep. 2020;30(7):2083–2093 e2085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamioka Y, Sumiyama K, Mizuno R, Sakai Y, Hirata E, Kiyokawa E, et al. Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Struct Funct. 2012;37(1):65–73.
Article
CAS
PubMed
Google Scholar
Stuart RO, Bush KT, Nigam SK. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A. 2001;98(10):5649–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
CAS
PubMed
Google Scholar
Brunskill EW, Potter SS. RNA-Seq defines novel genes, RNA processing patterns and enhancer maps for the early stages of nephrogenesis: Hox supergenes. Dev Biol. 2012;368(1):4–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop JM, Capobianco AJ, Doyle HJ, Finney RE, McMahon M, Robbins SM, et al. Proto-oncogenes and plasticity in cell signaling. Cold Spring Harb Symp Quant Biol. 1994;59:165–71.
Article
CAS
PubMed
Google Scholar
Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–85.
Article
CAS
PubMed
Google Scholar
Costantini F. GDNF/Ret signaling and renal branching morphogenesis: From mesenchymal signals to epithelial cell behaviors. Organogenesis. 2010;6(4):252–62.
Article
PubMed
PubMed Central
Google Scholar
Walker KA, Sims-Lucas S, Bates CM. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol. 2016;31(6):885–95.
Article
PubMed
Google Scholar
Lin EE, Sequeira-Lopez MLS, Gomez RA. RBP-J in FOXD1+renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am J Physiol-Renal. 2014;306(2):F249–58.
Article
CAS
Google Scholar
Tee WW, Shen SS, Oksuz O, Narendra V, Reinberg D. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell. 2014;156(4):678–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goke J, Chan YS, Yan J, Vingron M, Ng HH. Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell. 2013;50(6):844–55.
Article
CAS
PubMed
Google Scholar
Nadeau V, Charron J. Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Development. 2014;141(14):2825–37.
Article
CAS
PubMed
Google Scholar
Choi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature. 2017;548(7666):219–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corpet A, Almouzni G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol. 2009;19(1):29–41.
Article
CAS
PubMed
Google Scholar
Almouzni G, Cedar H. Maintenance of epigenetic information. Cold Spring Harb Perspect Biol. 2016;8(5):a019372.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mendiratta S, Gatto A, Almouzni G. Histone supply: multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol. 2019;218(1):39–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armstrong C, Spencer SL. Replication-dependent histone biosynthesis is coupled to cell-cycle commitment. Proc Natl Acad Sci U S A. 2021;118(31):e2100178118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claude KL, Bureik D, Chatzitheodoridou D, Adarska P, Singh A, Schmoller KM. Transcription coordinates histone amounts and genome content. Nat Commun. 2021;12(1):4202.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacAlpine DM, Almouzni G. Chromatin and DNA replication. Cold Spring Harb Perspect Biol. 2013;5(8):a010207.
Article
PubMed
PubMed Central
CAS
Google Scholar
Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta. 2007;1773(8):1285–98.
Article
CAS
PubMed
Google Scholar
Yue J, Lai F, Beckedorff F, Zhang A, Pastori C, Shiekhattar R. Integrator orchestrates RAS/ERK1/2 signaling transcriptional programs. Genes Dev. 2017;31(17):1809–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilliard S, Song R, Liu H, Chen CH, Li Y, Baddoo M, et al. Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol Open. 2019;8(5):bio042754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun. 2020;11(1):1222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J Am Soc Nephrol. 2019;30(1):63–78.
Article
CAS
PubMed
Google Scholar
Wang F, Ngo J, Li Y, Liu H, Chen CH, Saifudeen Z, et al. Targeted disruption of the histone lysine 79 methyltransferase Dot1L in nephron progenitors causes congenital renal dysplasia. Epigenetics. 2020;16:1–16.
CAS
Google Scholar
Reidy KJ, Villegas G, Teichman J, Veron D, Shen W, Jimenez J, et al. Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development. 2009;136(23):3979–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 2002;129(22):5301–12.
Article
CAS
PubMed
Google Scholar
Liu J, Edgington-Giordano F, Dugas C, Abrams A, Katakam P, Satou R, et al. Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J Am Soc Nephrol. 2017;28(11):3323–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, et al. p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development. 2015;142(7):1228–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21(3):392–402.
Article
CAS
PubMed
Google Scholar
Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev. 2017;31(4):336–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T, et al. ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem. 2004;279(48):50120–31.
Article
CAS
PubMed
Google Scholar
Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol. 2004;276(2):403–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belanger LF, Roy S, Tremblay M, Brott B, Steff AM, Mourad W, et al. Mek2 is dispensable for mouse growth and development. Mol Cell Biol. 2003;23(14):4778–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Kuure S. Analysis of migration in primary ureteric bud epithelial cells. Methods Mol Biol. 2012;886:147–55.
Article
CAS
PubMed
Google Scholar
Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999;99(4):377–86.
Article
CAS
PubMed
Google Scholar
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Z, Guo AY, van den Oord EJ, Aliev F, Jia P, Edenberg HJ, et al. Multi-species data integration and gene ranking enrich significant results in an alcoholism genome-wide association study. BMC Genomics. 2012;13(Suppl 8):S16.
Article
PubMed
PubMed Central
Google Scholar
Valerius MT, Patterson LT, Feng Y, Potter SS. Hoxa 11 is upstream of Integrin alpha8 expression in the developing kidney. Proc Natl Acad Sci U S A. 2002;99(12):8090–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
An YJ, Xu WJ, Jin X, Wen H, Kim H, Lee J, et al. Metabotyping of the C. elegans sir-2.1 mutant using in vivo labeling and (13)C-heteronuclear multidimensional NMR metabolomics. ACS Chem Biol. 2012;7(12):2012–8.
Article
CAS
PubMed
Google Scholar
Kurtzeborn K, Kwon H, Ihermann-Hella A, Kupari J, Kuure S: Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK-targets in embryonic kidney GEO https://www.ncbinlmnihgov/geo/query/acccgi?&acc=GSE1742292022.