van Huis A. Potential of insects as food and feed in assuring food security. Annu Rev Entomol. 2013;58(1):563–83. https://doi.org/10.1146/annurev-ento-120811-153704.
Article
CAS
PubMed
Google Scholar
Makkar HPS, Tran G, Henze V, Ankers P. State-of-the-art on use of insects as animal feed. Anim Feed Sci Tech. 2014;197:1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008.
Article
CAS
Google Scholar
Kupferschmidt K. Buzz Food. Science. 2015;350:267–9.
CAS
Google Scholar
ČiČková H, Newton GL, Lacy RC, Kozánek M. The use of fly larvae for organic waste treatment. Waste Manage. 2015;35:68–80. https://doi.org/10.1016/j.wasman.2014.09.026.
Article
CAS
Google Scholar
Alexander P, Brown C, Arneth A, Finnigan J, Moran D, Rounsevell MDA. Losses, inefficiencies and waste in the global food system. Agric Syst. 2017;153:190–200. https://doi.org/10.1016/j.agsy.2017.01.014.
Article
PubMed
PubMed Central
Google Scholar
Muller A, Schader C, El-Hage Scialabba N, Bruggemann J, Isensee A, Erb KH, et al. Strategies for feeding the world more sustainably with organic agriculture. Nat Commun. 2017;8(1):1290. https://doi.org/10.1038/s41467-017-01410-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelletier N, Tyedmers P. Forecasting potential global environmental costs of livestock production 2000-2050. P Natl Acad Sci. 2010;107(43):18371–4. https://doi.org/10.1073/pnas.1004659107.
Article
Google Scholar
Schader C, Muller A, Scialabba Nel H, Hecht J, Isensee A, Erb KH, et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J R Soc Interface. 2015;12(113):20150891. https://doi.org/10.1098/rsif.2015.0891.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cashion T, Tyedmers P, Parker RWR. Global reduction fisheries and their products in the context of sustainable limits. Fish and Fisheries. 2017;18(6):1026–37. https://doi.org/10.1111/faf.12222.
Article
Google Scholar
Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, van den Brand H, van Loon JJA, van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. Plos One. 2010;5(12):e14445. https://doi.org/10.1371/journal.pone.0014445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosch G, van Zanten HHE, Zamprogna A, Veenenbos M, Meijer NP, van der Fels-Klerx HJ, et al. Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. J Clean Prod. 2019;222:355–63. https://doi.org/10.1016/j.jclepro.2019.02.270.
Article
Google Scholar
Gasco L, Biasato I, Dabbou S, Schiavone A, Gai F. Animals fed insect-based diets: state-of-the-art on digestibility, performance and product quality. Animals. 2019;9:E170.
Article
PubMed
Google Scholar
Smetana S, Schmitt E, Mathys A. Sustainable use of Hermetia illucens insect biomass for feed and food: attributional and consequential life cycle assessment. Resour Conservcycl. 2019;144:285–96. https://doi.org/10.1016/j.resconrec.2019.01.042.
Article
Google Scholar
Tomberlin JK, van Huis A. Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: an historical perspective. J Ins Food Feed. 2020;6(1):1–4. https://doi.org/10.3920/JIFF2020.0003.
Article
Google Scholar
Nguyen T-X, Tomberlin J, Vanlaerhoven S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ Entomol. 2015;44(2):406–10. https://doi.org/10.1093/ee/nvv002.
Article
CAS
PubMed
Google Scholar
Jucker C, Erba D, Leonardi MG, Lupi D, Savoldelli S. Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) Larvae. Environ Entomol. 2017;46(6):1415–23. https://doi.org/10.1093/ee/nvx154.
Article
CAS
PubMed
Google Scholar
Ewusie EA, Kwapong PK, Ofosu-Budu G, Sandrock C, Akumah A, Nartey E, et al. Development of black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) in selected organic market waste fractions in Accra, Ghana. Asian J Biotechnol Bioresour Technol. 2018;4(1):1–16. https://doi.org/10.9734/AJB2T/2018/42371.
Article
Google Scholar
Lalander C, Diener S, Zurbrügg C, Vinnerås B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J Clean Prod. 2019;208:211–9. https://doi.org/10.1016/j.jclepro.2018.10.017.
Article
Google Scholar
Oonincx DGAB, van Huis A, van Loon JJA. Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. J Ins Food Feed. 2015;1(2):131–9. https://doi.org/10.3920/JIFF2014.0023.
Article
Google Scholar
Oonincx DGAB, van Broekhoven S, van Huis A, van Loon JJA. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. Plos One. 2015;10(12):e0144601. https://doi.org/10.1371/journal.pone.0144601.
Article
PubMed
PubMed Central
Google Scholar
Rehman KU, Cai MM, Xiao XP, Zheng LY, Wang H, Soomro AA, et al. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). J Environ Manage. 2017;196:458–65. https://doi.org/10.1016/j.jenvman.2017.03.047.
Article
CAS
PubMed
Google Scholar
Barragan-Fonseca KB, Dicke M, van Loon JJA. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed - a review. J Ins Food Feed. 2017;3(2):105–20. https://doi.org/10.3920/JIFF2016.0055.
Article
Google Scholar
Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agr. 2017;97(8):2594–600. https://doi.org/10.1002/jsfa.8081.
Article
CAS
Google Scholar
Heuel M, Sandrock C, Leiber F, Mathys A, Gold M, Zurbrügg C, et al. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 2021;100(4):101034. https://doi.org/10.1016/j.psj.2021.101034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dabbou S, Gai F, Biasato I, Capucchio MT, Biasibetti E, Dezzutto D, et al. Black soldier fly defatted meal as a dietary protein source for broiler chickens: effects on growth performance, blood traits, gut morphology and histological features. J Anim Sci Biotechno. 2018;9(1):49. https://doi.org/10.1186/s40104-018-0266-9.
Article
CAS
Google Scholar
Neumann C, Velten S, Liebert F. N Balance studies emphasize the superior protein quality of pig diets at high inclusion level of algae meal (Spirulina platensis) or insect meal (Hermetia illucens) when adequate amino acid supplementation is ensured. Animals. 2018;8(10):172. https://doi.org/10.3390/ani8100172.
Article
Google Scholar
Biasato I, Renna M, Gai F, Dabbou S, Meneguz M, Perona G, et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J Anim Sci Biotechno. 2019;10(1):12. https://doi.org/10.1186/s40104-019-0325-x.
Article
Google Scholar
Stadtlander T, Stamer A, Buser A, Wohlfahrt J, Leiber F, Sandrock C. Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J Ins Food Feed. 2017;3(3):165–75. https://doi.org/10.3920/JIFF2016.0056.
Article
Google Scholar
Nogales-Merida S, Gobbi P, Jozefiak D, Mazurkiewicz J, Dudek K, Rawski M, et al. Insect meals in fish nutrition. Rev Aquacult. 2019;11(4):1080–103. https://doi.org/10.1111/raq.12281.
Article
Google Scholar
Leong SY, Kutty SRM, Malakahmad A, Tan CK. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manage. 2016;47(Pt A):84–90. https://doi.org/10.1016/j.wasman.2015.03.030.
Article
CAS
Google Scholar
Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew Energ. 2016;98:197–202. https://doi.org/10.1016/j.renene.2016.03.022.
Article
CAS
Google Scholar
Jensen K, Kristensen T, Heckmann L-H, Sørensen J. Breeding and maintaining high-quality insects. In: van Huis A, Tomberlin JK, editors. Insects as food and feed: from production to consumption. Wageningen: Wageningen Academic Publishers; 2017. p. 175–98.
Google Scholar
Zhou F, Tomberlin JK, Zheng LY, Yu ZN, Zhang JB. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J Med Entomol. 2013;50(6):1224–30. https://doi.org/10.1603/ME13021.
Article
PubMed
Google Scholar
Sandrock C, Leupi S, Wohlfahrt J, Leiber F, Kreuzer M. Genotype × environment interactions in black soldier fly larvae grown on different feed substrates. 70th Annual Meeting of the European Federation of Animal Science. Ghent: Wageningen Academic publishers; 2019. p. 239.
Google Scholar
Zhan S, Fang G, Cai M, Kou Z, Xu J, Cao Y, et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res. 2020;30(1):50–60. https://doi.org/10.1038/s41422-019-0252-6.
Article
PubMed
Google Scholar
Generalovic TN, McCarthy SA, Warren IA, Wood JMD, Torrance J, Sims Y, et al. A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia Illucens L.). G3. 2021 (advance article online access). https://doi.org/10.1093/g3journal/jkab085.
Lessard BD, Yeates DK, Woodley NE. Revision of the Hermetiinae of Australia (Diptera: Stratiomyidae). Austral Entomol. 2019;58(1):122–36. https://doi.org/10.1111/aen.12333.
Article
Google Scholar
Rozkosný R. A biosystematic study of the European Stratiomyidae (Diptera). In: Spencer, KA, editor. Clitellariinae, Hermetiinae, Pachygasterinae and Bibliography. Series Entomol. 1983;2:172-176.
Marshall SA, Woodley NE, Hauser M. The historical spread of the black soldier fly, Hermetia illucens (L.) (Diptera, Stratiomyidae, Hermetiinae), and its establishment in Canada. J Ent Soc Ont. 2015;146:51–4.
Google Scholar
Woodley NE. A World Catalog of the Stratiomyidae (Insecta: Diptera). Int J North Am Dipterists’ Soc. 2001;11:1–476.
Google Scholar
Hardy DE. Insects of Hawaii. Volume 10, Diptera: Nematocera-Brachycera. Honululu: University of Hawaii Press; 1960.
Google Scholar
Leclercq M. A propos de Hermetia illucens (LINNAEUS, 1758) (“soldier fly”) (Diptera: Stratiomyidae: Hermetiinae). Bull Annls Soc r belge Ent. 1997;133:269–82.
Google Scholar
Booth DC, Sheppard C. Oviposition of the black soldier fly, Hermetia illucens (Diptera, Stratiomyidae) - eggs, masses, timing, and site characteristics. Environ Entomol. 1984;13(2):421–3. https://doi.org/10.1093/ee/13.2.421.
Article
Google Scholar
Sheppard DC, Tomberlin JK, Joyce JA, Kiser BC, Sumner SM. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J Med Entomol. 2002;39(4):695–8. https://doi.org/10.1603/0022-2585-39.4.695.
Article
PubMed
Google Scholar
Ståhls G, Meier R, Sandrock C, Hauser M, Šašić Zorić L, Laiho E, et al. The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species. BMC Evol Biol. 2020;20(1):60. https://doi.org/10.1186/s12862-020-01627-2.
Article
PubMed
PubMed Central
Google Scholar
Larson G, Burger J. A population genetics view of animal domestication. Trends Genet. 2013;29(4):197–205. https://doi.org/10.1016/j.tig.2013.01.003.
Article
CAS
PubMed
Google Scholar
Ohta T. Linkage disequilibrium due to random genetic drift in finite subdivided populations. P Natl Acad Sci. 1982;76:1940–4.
Article
Google Scholar
Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu Rev Ecol Evol Syst. 2009;40(1):481–501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414.
Article
Google Scholar
Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol. 2010;19(19):4113–30. https://doi.org/10.1111/j.1365-294X.2010.04773.x.
Article
PubMed
Google Scholar
Lawson Handley LJ, Estoup A, Evans DM, Thomas CE, Lombaert E, Facon B, et al. Ecological genetics of invasive alien species. BioControl. 2011;56(4):409–28. https://doi.org/10.1007/s10526-011-9386-2.
Article
Google Scholar
Lombaert E, Guillemaud T, Thomas CE, Lawson Handley LJ, Li J, Wang S, et al. Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis. Mol Ecol. 2011;20(22):4654–70. https://doi.org/10.1111/j.1365-294X.2011.05322.x.
Article
CAS
PubMed
Google Scholar
Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, et al. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions. 2016;18(4):935–52. https://doi.org/10.1007/s10530-016-1082-9.
Article
Google Scholar
Benelli G, Canale A, Raspi A, Fornaciari G. The death scenario of an Italian Renaissance princess can shed light on a zoological dilemma: did the black soldier fly reach Europe with Columbus? J Archaeol Sci. 2014;49:203–5. https://doi.org/10.1016/j.jas.2014.05.015.
Article
Google Scholar
Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol. 2017;34(4):980–96. https://doi.org/10.1093/molbev/msx050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javal M, Lombaert E, Tsykun T, Courtin C, Kerdelhue C, Prospero S, et al. Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Mol Ecol. 2019;28(5):951–67. https://doi.org/10.1111/mec.15030.
Article
PubMed
Google Scholar
Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, Bergland AO, et al. Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol. 2014;31(12):3148–63. https://doi.org/10.1093/molbev/msu246.
Article
PubMed
PubMed Central
Google Scholar
Goubert C, Minard G, Vieira C, Boulesteix M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity. 2016;117(3):125–34. https://doi.org/10.1038/hdy.2016.35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertelsmeier C, Keller L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol Evol. 2018;33(7):527–34. https://doi.org/10.1016/j.tree.2018.04.014.
Article
PubMed
Google Scholar
Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B. Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst. 2016;47(1):51–72. https://doi.org/10.1146/annurev-ecolsys-121415-032116.
Article
Google Scholar
Rius M, Darling JA. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol. 2014;29(4):233–42. https://doi.org/10.1016/j.tree.2014.02.003.
Article
PubMed
Google Scholar
Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol. 2009;24(3):136–44. https://doi.org/10.1016/j.tree.2008.10.007.
Article
PubMed
Google Scholar
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, et al. What we still don’t know about invasion genetics. Mol Ecol. 2015;24(9):2277–97. https://doi.org/10.1111/mec.13032.
Article
PubMed
Google Scholar
Facon B, Hufbauer Ruth A, Tayeh A, Loiseau A, Lombaert E, Vitalis R, et al. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol. 2011;21(5):424–7. https://doi.org/10.1016/j.cub.2011.01.068.
Article
CAS
PubMed
Google Scholar
Rhode C, Badenhorst R, Hull K, Greenwood M, Bester A, Andere A, et al. Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens). Anim Genet. 2020;51(5):752–62. https://doi.org/10.1111/age.12961.
Article
CAS
PubMed
Google Scholar
Slatkin M. Linkage disequilibrium- understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9(6):477–85. https://doi.org/10.1038/nrg2361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gray MM, Granka JM, Bustamante CD, Sutter NB, Boyko AR, Zhu L, et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics. 2009;181:493–505.
Article
Google Scholar
Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, et al. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl. 2009;2(4):504–22. https://doi.org/10.1111/j.1752-4571.2009.00082.x.
Article
PubMed
PubMed Central
Google Scholar
Thornton KR, Jensen JD, Becquet C, Andolfatto P. Progress and prospects in mapping recent selection in the genome. Heredity. 2007;98(6):340–8. https://doi.org/10.1038/sj.hdy.6800967.
Article
CAS
PubMed
Google Scholar
Wiener P, Wilkinson S. Deciphering the genetic basis of animal domestication. Proc R Soc B. 2011;278(1722):3161–70. https://doi.org/10.1098/rspb.2011.1376.
Article
PubMed
Google Scholar
Dale-Kuys RC, Roodt-Wilding R, Rhode C. Genome-wide linkage disequilibrium in South African abalone, Haliotis midae, and implications for understanding complex traits. Aquaculture. 2020;523:735002. https://doi.org/10.1016/j.aquaculture.2020.735002.
Article
CAS
Google Scholar
Makino T, Rubin CJ, Carneiro M, Axelsson E, Andersson L, Webster MT. Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol Evol. 2018;10(1):276–90. https://doi.org/10.1093/gbe/evy004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harpur BA, SM, Kent CF, Zayed A. Management increases genetic diversity of honey bees via admixture. Mol Ecol. 2012;21(18):4414–21. https://doi.org/10.1111/j.1365-294X.2012.05614.x.
Article
PubMed
Google Scholar
Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature. 2010;467(7315):587–90. https://doi.org/10.1038/nature09352.
Article
CAS
PubMed
Google Scholar
Zygouridis NE, Argov Y, Nemny-Lavy E, Augustinos AA, Nestel D, Mathiopoulos KD. Genetic changes during laboratory domestication of an olive fly SIT strain. J Appl Entomol. 2014;138(6):423–32. https://doi.org/10.1111/jen.12042.
Article
Google Scholar
Tayeh A, Estoup A, Laugier G, Loiseau A, Turgeon J, Toepfer S, et al. Evolution in biocontrol strains: insight from the harlequin ladybird Harmonia axyridis. Evol Appl. 2012;5(5):481–8. https://doi.org/10.1111/j.1752-4571.2012.00274.x.
Article
PubMed
PubMed Central
Google Scholar
Bang A, Courchamp F. Industrial rearing of edible insects could be a major source of new biological invasions. Ecol Lett. 2021;24(3):393–7. https://doi.org/10.1111/ele.13646.
Article
PubMed
Google Scholar
Su W, Michaud JP, Runzhi Z, Fan Z, Shuang L. Seasonal cycles of assortative mating and reproductive behaviour in polymorphic populations of Harmonia axyridis in China. Ecol Entomol. 2009;34(4):483–94. https://doi.org/10.1111/j.1365-2311.2008.01075.x.
Article
Google Scholar
Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7(12):1225–41. https://doi.org/10.1111/j.1461-0248.2004.00684.x.
Article
Google Scholar
Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol. 2015;24(9):2095–111. https://doi.org/10.1111/mec.13183.
Article
PubMed
Google Scholar
Cooper BS, Ginsberg PS, Turelli M, Matute DR. Wolbachia in the Drosophila yakuba complex: pervasive frequency variation and weak cytoplasmic incompatibility, but no apparent effect on reproductive isolation. Genetics. 2017;205(1):333–51. https://doi.org/10.1534/genetics.116.196238.
Article
PubMed
Google Scholar
Layton EM, On J, Perlmutter JI, Bordenstein SR, Shropshire JD. Paternal grandmother age affects the strength of Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster. mBio. 2019;10:e01879–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehmann P, Lyytinen A, Piiroinen S, Lindström L. Latitudinal differences in diapause related to photoperiodic responses of European Colorado potato beetles (Leptinotarsa decemlineata). Evol Ecol. 2015;29(2):269–82. https://doi.org/10.1007/s10682-015-9755-x.
Article
Google Scholar
Ragland GJ, Armbruster PA, Meuti ME. Evolutionary and functional genetics of insect diapause: a call for greater integration. Curr Opin Insect Sci. 2019;36:74–81. https://doi.org/10.1016/j.cois.2019.08.003.
Article
PubMed
PubMed Central
Google Scholar
Zeender V, Roy J, Wegmann A, Schäfer MA, Gourgoulianni N, Blanckenhorn WU, et al. Comparative reproductive dormancy differentiation in European black scavenger flies (Diptera: Sepsidae). Oecologia. 2019;189(4):905–17. https://doi.org/10.1007/s00442-019-04378-0.
Article
PubMed
Google Scholar
Samayoa AC, Hwang SY. Degradation capacity and diapause effects on oviposition of Hermetia illucens (Diptera: Stratiomyidae). J Econ Entomol. 2018;111(4):1682–90. https://doi.org/10.1093/jee/toy078.
Article
PubMed
Google Scholar
Holmes LA, VanLaerhoven SL, Tomberlin JK. Lower temperature threshold of black soldier fly (Diptera: Stratiomyidae) development. J Ins Food Feed. 2016;2(4):255–62. https://doi.org/10.3920/JIFF2016.0008.
Article
Google Scholar
Spranghers T, Noyez A, Schildermans K, De Clercq P. Cold Hardiness of the black soldier fly (Diptera: Stratiomyidae). J Econ Entomol. 2017;110(4):1501–7. https://doi.org/10.1093/jee/tox142.
Article
CAS
PubMed
Google Scholar
Chia SY, Tanga CM, Khamis FM, Mohamed SA, Salifu D, Sevgan S, et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. Plos One. 2018;13(11):e0206097. https://doi.org/10.1371/journal.pone.0206097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandrock C, Schirrmeister BE, Vorburger C. Evolution of reproductive mode variation and host associations in a sexual-asexual complex of aphid parasitoids. BMC Evol Biol. 2011;11(1):348. https://doi.org/10.1186/1471-2148-11-348.
Article
PubMed
PubMed Central
Google Scholar
Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, et al. Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol Biol Evol. 2020;37(9):2661–78. https://doi.org/10.1093/molbev/msaa120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanckenhorn WU. Causes and consequences of phenotypic plasticity in body size: the case of the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae). In: Whitman DW, Ananthakrishnan TN, editors. Phenotypic plasticity of insects: mechanisms and consequences. Enfield: Science Publishers, Inc.; 2009. p. 369-422, doi: https://doi.org/10.1201/b10201-11.
Wynants E, Frooninckx L, Crauwels S, Verreth C, De Smet J, Sandrock C, et al. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microb Ecol. 2019;77(4):913–30. https://doi.org/10.1007/s00248-018-1286-x.
Article
CAS
PubMed
Google Scholar
Khamis FM, Ombura FLO, Akutse KS, Subramanian S, Mohamed SA, Fiaboe KKM, et al. Insights in the global genetics and gut microbiome of black soldier fly, Hermetia illucens: implications for animal feed safety control. Front Microbiol. 2020;11:1538.
Article
PubMed
PubMed Central
Google Scholar
Vorburger C, Sandrock C, Gouskov A, Castañeda L, Ferrari J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host-parasitoid interaction. Evolution. 2009;63(6):1439–50. https://doi.org/10.1111/j.1558-5646.2009.00660.x.
Article
PubMed
Google Scholar
Wang Y, Kapun M, Waidele L, Kuenzel S, Bergland AO, Staubach F. Common structuring principles of the Drosophila melanogaster microbiome on a continental scale and between host and substrate. Environ Microbiol Rep. 2020;12(2):220–8. https://doi.org/10.1111/1758-2229.12826.
Article
PubMed
Google Scholar
Ewusie EA, Kwapong PK, Ofosu-Budu G, Sandrock C, Akumah AM, Nartey EK, et al. The black soldier fly, Hermetia illucens (Diptera:Stratiomyidae): trapping and culturing of wild colonies in Ghana. Sci Afr. 2019;5:e00134. https://doi.org/10.1016/j.sciaf.2019.e00134.
Article
Google Scholar
Suurväli J, Whiteley AR, Zheng Y, Gharbi K, Leptin M, Wiehe T. The laboratory domestication of zebrafish: from diverse populations to inbred substrains. Mol Biol Evol. 2020;37(4):1056–69. https://doi.org/10.1093/molbev/msz289.
Article
CAS
PubMed
Google Scholar
Hufbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J, Lee CE, et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl. 2012;5(1):89–101. https://doi.org/10.1111/j.1752-4571.2011.00211.x.
Article
PubMed
Google Scholar
Brede N, Sandrock C, Straile D, Spaak P, Jankowski T, Streit B, et al. The impact of human-made ecological changes on the genetic architecture of Daphnia species. P Natl Acad Sci. 2009;106(12):4758–63. https://doi.org/10.1073/pnas.0807187106.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. 2019. https://www.R-project.org/
Google Scholar
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. https://doi.org/10.7717/peerj.281.
Article
PubMed
PubMed Central
Google Scholar
Kamvar ZN, Brooks JC, Grünwald NJ. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet. 2015;6:208.
Article
PubMed
PubMed Central
Google Scholar
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–5. https://doi.org/10.1093/bioinformatics/btn129.
Article
CAS
PubMed
Google Scholar
Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27(21):3070–1. https://doi.org/10.1093/bioinformatics/btr521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goudet J, Jombart T. hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.04-22. 2015. https://CRAN.R-project.org/package=hierfstat. Accessed 28 Feb 2020.
Adamack AT, Gruber B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol. 2014;5(4):384–7. https://doi.org/10.1111/2041-210X.12158.
Article
Google Scholar
Gruber B, Adamack AT. Landgenreport: a new R function to simplify landscape genetic analysis using resistance surface layers. Mol Ecol Resour. 2015;15(5):1172–8. https://doi.org/10.1111/1755-0998.12381.
Article
PubMed
Google Scholar
Soro A, Quezada-Euan JJG, Theodorou P, Moritz RFA, Paxton RJ. The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diverstiy. Conserv Genet. 2017;18(3):607–19. https://doi.org/10.1007/s10592-016-0912-8.
Article
Google Scholar
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63. https://doi.org/10.1002/bimj.200810425.
Article
PubMed
Google Scholar
Paradis E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26(3):419–20. https://doi.org/10.1093/bioinformatics/btp696.
Article
CAS
PubMed
Google Scholar
Archer FI, Adams PE, Schneiders BB. strataG: an R package for manipulating, summarizing and analysing population genetic data. Mol Ecol Resour. 2017;17(1):5–11. https://doi.org/10.1111/1755-0998.12559.
Article
CAS
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016. https://doi.org/10.1007/978-3-319-24277-4.
Book
Google Scholar
Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:47–50.
Article
CAS
Google Scholar
Belkhir K, Borsa P, Chiki L, Raufaste N, Bonhomme F. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Montpellier: Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II. 1996–2004.
Chessel D, Dufour A, Thioulouse J. The ade4 Package - I: One-Table Methods. R News. 2004;4:5–10.
Google Scholar
Dray S, Dufour A. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.
Article
Google Scholar
Dray S, Dufour A, Chessel D. The ade4 package - II: two-table and K-table methods. R News. 2007;7:47–52.
Google Scholar
Bougeard S, Dray S. Supervised multiblock analysis in R with the ade4 Package. J Stat Softw. 2018;86:1–17.
Article
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–8.
Article
Google Scholar
Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967;19(3 Pt 1):233–57.
CAS
PubMed
PubMed Central
Google Scholar
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27(2):209–20.
CAS
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, et al. vegan: Community Ecology Package. 2019. https://CRAN.R-project.org/package=vegan. Accessed 14 April 2020.
Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics. 1997;145(4):1219–28. https://doi.org/10.1093/genetics/145.4.1219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pebesma EJ, Bivand RS. Classes and methods for spatial data in R. R News. 2005;5:9–13.
Google Scholar
Bivand RS, Pebesma E, Gomez-Rubio V. Applied spatial data analysis with R. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-7618-4.
Book
Google Scholar
Grosjean P. SciViews-R. Belgium: University of Mons; 2019. http://www.sciviews.org/SciViews-R
Google Scholar
Beugin MP, Gayet T, Pontier D, Devillard S, Jombart TA-O. A fast likelihood solution to the genetic clustering problem. Methods Ecol Evol. 2018;9(4):1006–16. https://doi.org/10.1111/2041-210X.12968.
Article
PubMed
PubMed Central
Google Scholar
Akogul S, Erisoglu M. A comparison of information criteria in clustering based on mixture of multivariate normal distributions. Math Comput Appl. 2016;21:34.
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94. https://doi.org/10.1186/1471-2156-11-94.
Article
PubMed
PubMed Central
Google Scholar
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14(1):209–14. https://doi.org/10.1111/1755-0998.12157.
Article
CAS
PubMed
Google Scholar
Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30(8):1187–9. https://doi.org/10.1093/bioinformatics/btt763.
Article
CAS
PubMed
Google Scholar
Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakraborty R, Jin L. A unified approach to study hypervariable polymorphisms: Statistical considerations of determining relatedness and population distances. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ, editors. DNA Fingerprinting: State of the Science. Basel: Birkhäuser; 1993. p. 153–75. https://doi.org/10.1007/978-3-0348-8583-6_14.
Chapter
Google Scholar
Rannala B, Mountain JL. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci. 1997;94(17):9197–201. https://doi.org/10.1073/pnas.94.17.9197.
Article
CAS
PubMed
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–70. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x.
Article
CAS
PubMed
Google Scholar
Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci. 1995;92(15):6723–7. https://doi.org/10.1073/pnas.92.15.6723.
Article
CAS
PubMed
Google Scholar