Rota-Stabelli O, Daley AC, Pisani D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol. 2013;23:1–7.
Article
CAS
Google Scholar
Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, et al. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B Biol Sci. 2011;278:298–306.
Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA, Poprawa I, et al. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol. 2013;13:230.
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452:745–9.
Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci. 2009;276:4261–70.
Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, et al. Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol. 2011;61:880–7.
Giribet G, Edgecombe GD. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr Comp Biol. 2017;57:455–66.
Article
PubMed
Google Scholar
Murienne J, Daniels SR, Buckley TR, Mayer G, Giribet G. A living fossil tale of Pangean biogeography. Proc R Soc B Biol Sci. 2014;281:1471–2954.
Google Scholar
Garwood RJ, Edgecombe GD, Charbonnier S, Chabard D, Sotty D, Giribet G. Carboniferous Onychophora from Montceau-les-Mines, France, and onychophoran terrestrialization. Invertebr Biol. 2016;135:179–90.
Article
PubMed
PubMed Central
Google Scholar
Lankester ER. The structure and classification of the Arthropoda. Q J Microsc Sci. 1904;47:523–82.
Google Scholar
Sigwart JD, Sumner-Rooney LH, Mollusca: Caudofoveata, Monoplacophora, Polyplacophora, Scaphopoda, And Solenogastres. In: Schmidt-Rhaesa A, Harzsch S, Purschke G, editors. Structure and Evolution of Invertebrate Nervous Systems. Oxford: Oxford University Press; 2016. p. 172–89.
Google Scholar
Manton SM. The evolution of arthropodan locomotory mechanisms. — Part I. The locomotion of Peripatus. J Linn Soc Lond Zool. 1950;41:529–70.
Article
Google Scholar
Eriksson BJ, Budd GE. Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev. 2000;29:197–209.
Article
CAS
PubMed
Google Scholar
Mayer G, Harzsch S. Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol. 2008;507:1196–208.
Article
PubMed
Google Scholar
Mayer G, Whitington PM, Sunnucks P, Pflüger H-J. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol. 2010;10:255.
Article
PubMed
PubMed Central
Google Scholar
Janssen R, Eriksson BJ, Tait NN, Budd GE. Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool. 2014;11:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: insights from Onychophora (velvet worms) and Tardigrada (water bears). J Comp Neurol. 2015;523:1865–85.
Article
CAS
PubMed
Google Scholar
Martin C, Gross V, Pflüger H-J, Stevenson PA, Mayer G. Assessing segmental versus non-segmental features in the ventral nervous system of onychophorans (velvet worms). BMC Evol Biol. 2017;17:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oliveira IS, Kumerics A, Jahn H, Müller M, Pfeiffer F, Mayer G. Functional morphology of a lobopod: case study of an onychophoran leg. Roy Soc Open Sci. 2019;6:191200.
Article
CAS
Google Scholar
Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, et al. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool. 2010;7:29.
Hejnol A, Lowe CJ. Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150045.
Article
PubMed
PubMed Central
Google Scholar
Harzsch S. Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phyologeny. Integr Comp Biol. 2006;46:162–94.
Article
PubMed
Google Scholar
Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A, Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G, editors. Arthropod Biology and Evolution – Molecules, Development, Morphology. Berlin, Heidelberg: Springer; 2013. p. 299–342.
Chapter
Google Scholar
Schmidt-Rhaesa A, Harzsch S, Purschke G. Structure and Evolution of Invertebrate Nervous Systems. Oxford: Oxford University Press; 2016.
Google Scholar
Balfour FM. The anatomy and development of Peripatus capensis. Q J Microsc Sci. 1883;23:213–59.
Google Scholar
Saint-Remy G. Contribution à l'étude du cerveau chez les arthropodes trachéates. Arch Zool Exp Gen. 1887:1–274.
Holmgren NF. Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. Kungl Svenska Vet Handl [Ser 2]. 1916;56:1–303.
Fedorow B. Zur Anatomie des Nervensystems von Peripatus. II. Das Nervensystem des vorderen Körperendes und seine Metamerie. Zool Jahrb Abt Anat Ontog Tiere. 1929;50:279–332.
Google Scholar
Fedorow B. Zur Anatomie des Nervensystems von Peripatus. I. Das Neurosomit von Peripatus tholloni. Zool Jahrb Abt Anat Ontog Tiere. 1926;48:273–310.
Google Scholar
Hanström B. Bemerkungen über das Gehirn und die Sinnesorgane der Onychophoren. Lunds Univ. Årsskr. 1935;31:1–37.
Google Scholar
Hanström B. Onychophora. In: Hanström B, editor. Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Berlin: Springer; 1928. p. 341–51.
Google Scholar
Schürmann F-W, Histology and ultrastructure of the onychophoran brain. In: Gupta AP, editor. Arthropod brain: its evolution, development, structure, and functions. New York: John Wiley & Sons; 1987. p. 159–80.
Google Scholar
Strausfeld NJ, Strausfeld C, Stowe S, Rowell D, Loesel R. The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev. 2006;35:169–96.
Article
CAS
PubMed
Google Scholar
Eriksson BJ, Tait NN, Budd GE. Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol. 2003;255:1–23.
Article
PubMed
Google Scholar
Eriksson BJ, Stollewerk A. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci USA. 2010;107:22576–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen R, Budd GE. Oscillating waves of Fox, Cyclin and CDK gene expression indicate unique spatiotemporal control of cell cycling during nervous system development in onychophorans. Arthropod Struct Dev. 2021;62:101042.
Article
PubMed
Google Scholar
Mayer G, Whitington PM. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol. 2009;335:263–75.
Article
CAS
PubMed
Google Scholar
Martin C, Hering L, Metzendorf N, Hormann S, Kasten S, Fuhrmann S, et al. Analysis of pigment-dispersing factor neuropeptides and their receptor in a velvet worm. Front Endocrinol. 2020;11:273.
Martin C, Mayer G. Insights into the segmental identity of post-oral commissures and pharyngeal nerves in Onychophora based on retrograde fills. BMC Neurosci. 2015;16:53.
Article
PubMed
PubMed Central
Google Scholar
Martin C, Mayer G. Neuronal tracing of oral nerves in a velvet worm—implications for the evolution of the ecdysozoan brain. Front Neuroanat. 2014;8(7):1–13.
Google Scholar
Mayer G, Harzsch S. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol. 2007;7:118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S. Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc B Biol Sci. 2006;273:1857–66.
Article
Google Scholar
Snodgrass RE. Evolution of the Annelida. Onychophora and Arthropoda. Smith Misc Coll. 1938;97:1–159.
Google Scholar
Mayer G. Structure and development of onychophoran eyes—what is the ancestral visual organ in arthropods. Arthropod Struct Dev. 2006;35:231–45.
Article
PubMed
Google Scholar
Cong P, Ma X, Hou X, Edgecombe GD, Strausfeld NJ. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature. 2014;513:538–42.
Article
CAS
PubMed
Google Scholar
Strausfeld NJ. Palaeontology: clearing the heads of Cambrian arthropods. Curr Biol. 2015;25:R616–8.
Article
CAS
PubMed
Google Scholar
Mayer G, Martin C, Oliveira IS, Franke FA, Gross V. Latest anomalocaridid affinities challenged. Nature. 2014;516:E1–2.
Article
CAS
PubMed
Google Scholar
Mayer G, Onychophora. In: Schmidt-Rhaesa A, Harzsch S, Purschke G, editors. Structure and evolution of invertebrate nervous systems. Oxford: Oxford University Press; 2016. p. 390–401.
Google Scholar
Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, et al. A systematic nomenclature for the insect brain. Neuron. 2014;81:755–65.
Moritz M, Onychophora. In: Kaestner A, Gruner HE, editors. Lehrbuch der Speziellen Zoologie, Band I: Wirbellose, Tiere, 3.Teil. Jena, Germany: Gustav Fischer Verlag; 1982. p. 470–96.
Google Scholar
Zacher F. Onychophora. In: Krumbach T, editor. Handbuch der Zoologie. vol. 3. Berlin and Leipzig: De Gruyter & Co.; 1933. 78–138.
Pflugfelder O, Onychophora. In: Pflugfelder O, editor. Lehrbuch der Entwicklungsgeschichte und Entwicklungsphysiologie der Tiere Jena: Gustav Fischer; 1970. p. 165–73.
Pflugfelder O. Onychophora. In: Czihak G, editor. Grosses Zoologisches Praktikum. 13a. Stuttgart: Gustav Fischer; 1968. 1–42.
Schürmann F-W, Common and special features of the nervous system of Onychophora: a comparison with Arthropoda, Annelida and some other invertebrates. In: Breidbach O, Kutsch W, editors. The Nervous System of Invertebrates: An Evolutionary and Comparative Approach. Basel: Birkhäuser; 1995. p. 139–58.
Chapter
Google Scholar
Beckmann H, Hering L, Henze MJ, Kelber A, Stevenson PA, Mayer G. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. J Exp Biol. 2015;218:915–22.
Article
PubMed
Google Scholar
Horridge GA, Onychophora. In: Bullock TH, Horridge GA, editors. Structure and function in the nervous systems of invertebrates, Volume I. San Francisco, California: W.H. Freeman Company; 1965. p. 791–8.
Google Scholar
Eriksson BJ, Stollewerk A. The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. Arthropod Struct Dev. 2010;39:478–90.
Article
CAS
PubMed
Google Scholar
Frase T, Richter S. The fate of the onychophoran antenna. Dev Genes Evol. 2013;223:247–51.
Article
PubMed
Google Scholar
Mayer G, Franke FA, Treffkorn S, Gross V, IdS O, Onychophora. In: Wanninger A, editor. Evolutionary Developmental Biology of Invertebrates 3: Ecdysozoa I: Non-Tetraconata. Berlin: Springer; 2015. p. 53–98.
Google Scholar
Korschelt E, Heider K, Onychophora (Peripatus). In: Korschelt E, Heider K, editors. Text-Book of the Embryology of Invertebrates, Volume III. Arachnida, Pentastomidae, Pantopoda, Tardigrada, Onychophora, Myriopoda, Insecta, vol. 3. London: Swan Sonnenschein and Co., Ltd.; 1899. p. 164–217.
Google Scholar
Butt FH. The structure and some aspects of development of the onychophoran head. Smith Misc Coll. 1959;137:43–60.
Google Scholar
Eriksson BJ, Larson ET, Thörnqvist P-O, Tait NN, Budd GE. Expression of engrailed in the developing brain and appendages of the onychophoran Euperipatoides kanangrensis (Reid). J Exp Zool Part B Mol Dev Evol. 2005;304B:1–9.
Article
CAS
Google Scholar
Lane NJ, Campiglia SS. The lack of a structured blood-brain barrier in the onychophoran Peripatus acacioi. J Neurocytol. 1987;16:93–104.
Article
CAS
PubMed
Google Scholar
Pass G. Antennal circulatory organs in Onychophora, Myriapoda and Hexapoda: functional morphology and evolutionary implications. Zoomorphology. 1991;110:145–64.
Article
Google Scholar
Storch V, Ruhberg H, Onychophora. In: Harrison FW, Rice ME, editors. Microscopic Anatomy of Invertebrates, vol. 12. New York: Wiley-Liss; 1993. p. 11–56.
Google Scholar
Whitington PM, The evolution of arthropod nervous systems: insights from neural development in the Onychophora and Myriapoda. In: Striedter GF, Rubenstein JLR, editors. Theories, Development, Invertebrates, vol. 1. Oxford: Academic Press; 2007. p. 317–36.
Google Scholar
Eriksson BJ, Tait NN, Budd GE, Akam M. The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol. 2009;219:249–64.
Article
PubMed
Google Scholar
Whitington P, Mayer G. The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev. 2011;40:193–209.
Article
PubMed
Google Scholar
Martin C, Gross V, Hering L, Tepper B, Jahn H, Oliveira IS, et al. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A. 2017;203:565–90.
Mayer G, Oliveira IS, Baer A, Hammel JU, Gallant J, Hochberg R. Capture of prey, feeding, and functional anatomy of the jaws in velvet worms (Onychophora). Integr Comp Biol. 2015;55:217–27.
Article
PubMed
Google Scholar
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC Dev Biol. 2019;19:7.
Article
PubMed
PubMed Central
Google Scholar
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: implications for the evolution of NK family genes in nephrozoans. EvoDevo. 2018;9:17.
Article
PubMed
PubMed Central
Google Scholar
Korschelt E, Heider K, Onychophoren (Peripatus). In: Korschelt E, Heider K, editors. Lehrbuch der Vergleichenden Entwicklungsgeschichte der wirbellosen Thiere. Specieller Theil, vol. 2. Gustav Fischer: Jena, Germany; 1891. p. 677–723.
Google Scholar
Weber H. Morphologie, Histologie und Entwicklungsgeschichte der Articulaten. Fortschr Zool. 1952;9:18–231.
Google Scholar
Cong P, Ma X, Hou X, Edgecombe GD, Strausfeld NJ, Cong, et al. reply. Nature. 2014;516:E3–4.
Article
CAS
PubMed
Google Scholar
Grube E. Über den Bau von Peripatus edwardsii. Müller's Arch Anat Physiol. 1853:322–60.
Bouvier EL. Monographie des Onychophores. Ann. Sci. Nat. Zool. Biol. Anim. [9e Sér.]. 1905;2:1–383.
Marcus E. Sobre os Onychophores. Arq Inst Biol [São Paulo]. 1937;8:255–66.
Google Scholar
Pflugfelder O. Entwicklung von Paraperipatus amboinensis n. sp. Zool Jahrb Abt Anat Ontog Tiere. 1948;69:443–92.
Google Scholar
von Kennel J. Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. I. Theil. Arb. Zool.-Zootom. Inst. Würzburg. 1885;7:95–229.
Foster M, Sedgwick A. The works of Francis Maitland Balfour, vol. 4. London: Macmillan; 1885.
Minot CS. Balfour's last researches on Peripatus. Science. 1883;2:306–9.
Article
CAS
PubMed
Google Scholar
Kemp S. Onychophora. Rec Indian Museum. 1914;8:471–92.
Article
Google Scholar
Strausfeld NJ, The divergent evolution of arthropod brains: ground pattern organization and stability through geological time. In: Byrne JH, editor. The Oxford Handbook of Invertebrate Neurobiology. New York: Oxford University Press; 2019. p. 31–69.
Google Scholar
Mayer G, Kauschke S, Rüdiger J, Stevenson PA. Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS ONE. 2013;8:e59090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schumann I, Hering L, Mayer G. Immunolocalization of arthropsin in the onychophoran Euperipatoides rowelli (Peripatopsidae). Front Neuroanat. 2016;10:1–12.
Article
CAS
Google Scholar
Jahn H, Oliveira IS, Gross V, Martin C, Hipp A, Mayer G, et al. Evaluation of contrasting techniques for X-ray imaging of velvet worms (Onychophora). J. Microsc. 2018;270:343–58.
Hall BK. Francis Maitland Balfour (1851–1882): a founder of evolutionary embryology. J Exp Zool Part B Mol Dev Evol. 2003;299:3–8.
Article
Google Scholar
Lang A. Chapter VI: Second Division of the Arthropoda. In. Text-Book of Comparative Anatomy. London: Macmillan; 1891. 178–508.
Hilton WA. Nervous system and sense organs. XXXI. Onychophora. J Entomol Zool. 1928;20:45–9.
Google Scholar
Henry LM. The nervous system and the segmentation of the head in the Annulata. Microentomology. 1948;13:27–48.
CAS
PubMed
Google Scholar
Anderson DT. Embryology and Phylogeny in Annelids and Arthropods. Oxford: Pergamon Press; 1973.
Google Scholar
Schürmann F-W, Sandeman DC. Giant fibres in the ventral nerve cord of Peripatoides leuckarti (Onychophora). Naturwissenschaften. 1976;63:580–1.
Article
PubMed
Google Scholar
Hoyle G, Williams M. The musculature of Peripatus and its innervation. Philos Trans R Soc Lond B Biol Sci. 1980;288:481–510.
Article
Google Scholar
Hoyle G, del Castillo J. Neuromuscular transmission in Peripatus. J Exp Biol. 1979;83:13–29.
Article
CAS
PubMed
Google Scholar
Loesel R, Strausfeld NJ. Common design in brains of velvet worms and chelicerates and their phylogenetic relationships. In: Elsner N, Zimmermann H, editors. The Neurosciences from Basic Research to Therapy. Stuttgart: Thieme Verlag; 2003. 677.
Eriksson BJ, Tait NN, Norman JM, Budd GE. An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae). Arthropod Struct Dev. 2005;34:407–18.
Article
Google Scholar
Mayer G, Whitington PM. Velvet worm development links myriapods with chelicerates. Proc R Soc B Biol Sci. 2009;276:3571–9.
Article
Google Scholar
Hutton FW. On Peripatus novæ-zealandiæ. Ann Mag Nat Hist [Series 4]. 1876;18:361–369.
Peña-Contreras Z, Mendoza-Briceño RV, Miranda-Contreras L, Palacios-Prü EL. Synaptic dimorphism in onychophoran cephalic ganglia. Rev Biol Trop. 2007;55:261–7.
PubMed
Google Scholar
Sänger N. Peripatus capensis Gr. and Peripatus leuckartii n. sp. In: Proceedings of the Second Congress of Russian Natural Scientists. Moscow: University Publisher; 1871. p. 239–62.
Google Scholar
Anonymous. Peripatus capensis Sr. et Peripatus leuckartii, n. sp. Bull Soc philomath Paris [Serie 9], vol. 3; 1900. p. 9–36.
Google Scholar
Milne-Edwards H. Note sur le Peripate juliforme. Ann Sci Nat [2e Série]. 1842;18:126–128.
Sanchez S. Cellules neurosécrétrices et organes infracérébraux de Peripatopsis moseleyi Wood (Onychophores) et neurosécrétion chez Nymphon gracile Leach (Pycnogonides). Arch. Zool. Exp. Gen. [Notes Rev.]. 1958;96:57–62.
Google Scholar
Balfour FM. Sur certains points de l'anatomie du Peripatus capensis. Arch Zool Exp. 1879;8:XIII–XV.
Google Scholar
Blanchard E. Recherches sur l'organisation des Vers. Ann. Sci. Nat. [3e Sér.]. 1847;8:119–149.
Gay C. Malacopodes. In: Gay C, editor. Historia Fisica y Politica de Chile, vol. 3. Paris: En el Museo de Historia Naturale de Santiago; 1849. p. 57–60.
Google Scholar
von Kennel J. Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n. sp. II. Theil. Arb. Zool.-Zootom. Inst, vol. 8. Würzburg; 1888. p. 1–93.
Zacher F, Onychophora. In: Korschelt E, editor. Handwörterbuch der Naturwissenschaften, vol. 7. Jena: Gustav Fischer; 1912. p. 300–7.
Google Scholar
Onychophora PO. In: Seidel F, editor. Morphogenese der Tiere. vol. 1. Reihe, Lieferung 4:J-I. Jena: Gustav Fischer; 1980. p. 13–76.
Ruhberg H, Mayer G, Onychophora, Stummelfüßer. In: Westheide W, Rieger G, editors. Spezielle Zoologie Teil 1: Einzeller und Wirbellose Tiere. Berlin: Springer-Verlag; 2013. p. 457–64.
Google Scholar
Leuckart R. Bericht über die Leistungen der Naturgeschichte der niederen Thiere während der Jahre 1868–1869. Arch. Naturgesch. 1869;35:207–344.
Google Scholar
Schmarda LK, Ordnung I, Malacopoda Blainville. Onychophora. Grube. In: Schmarda LK, editor. Zoologie, vol. 2. 2nd ed. Wilhelm Braunmüller: Wien; 1878. p. 74–7.
Google Scholar
Sedgwick A, Peripatus. In: Harmer SF, Shipley AE, editors. Peripatus, Myriapods and Insects, part I, vol. 5. London: MacMillan & Co.; 1895. p. 3–26.
Google Scholar
Balfour FM. On certain points in the anatomy of Peripatus capensis. Q J Microsc Sci. 1879;19:431–3.
Google Scholar
Franke FA, Mayer G. Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLoS ONE. 2014;9:e114383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nylund A, Ruhberg H, Tjonneland A, Meidell B. Heart ultrastructure in four species of Onychophora (Peripatopsidae and Peripatidae) and phylogenetic implications. Zool Beitr. 1988;32:17–30.
Google Scholar
Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM. Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol. 2009;513:265–91.
Article
PubMed
PubMed Central
Google Scholar
Flögel J. Über den einheitlichen Bau des Gehirns in den verschiedenen Insektenordnungen. Z Wiss Zool. 1878;30:556–92.
Google Scholar
Rosenberg J, Seifert G. Feinstruktur der Innervierung des Dorsalgefäßes von Peripatoides leuckarti (Saenger 1869) (Onychophora; Peripatopsidae). Zool Anz. 1978;201:21–30.
Google Scholar
Oliveira IS, Tait NN, Strübing I, Mayer G. The role of ventral and preventral organs as attachment sites for segmental limb muscles in Onychophora. Front Zool. 2013;10:73.
Article
Google Scholar
Cuénot L, Les Onychophores. In: Grassé P-P, editor. Traité de Zoologie, vol. 6. Paris: Masson et Cie Éditeurs; 1949. p. 1–37.
Google Scholar
Sedgwick A. The development of the Cape species of Peripatus. Part III. On the changes from stage A to stage F. Q J Microsc Sci. 1887;27:467–550.
Google Scholar
Mayer G, Koch M. Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthropod Struct Dev. 2005;34:471–80.
Article
Google Scholar
Bern HA, Hagadorn IR, Neurosecretion. In: Bullock TH, Horridge GA, editors. Structure and function in the nervous systems of invertebrates, Volume I. San Francisco, California: W.H. Freeman Company; 1965. p. 353–429.
Google Scholar
Dakin WJ. The infra-cerebral organs of Peripatus. Q J Microsc Sci. 1922;66:409–17.
Google Scholar
Fedorov BG. On the morphology of the brain of Peripatus. In: Sewertzoff AN, Matveiev BS, editors. Proceedings of the Second Congress of Zoologists, Anatomists, and Histologists of USSR: Moscow 4–10 May 1925. Moscow: Izd. "Glavnauka"; 1927. 92–94.
Duboscq O. Notes sur Opisthopatus cinctipes Purc. I. Sur les poils des papilles primaires et leur développement. — II. Les organes ventraux du cerveau. Arch Zool Exp. 1920;59:21–7.
Google Scholar
Badonnel A. Sur quelques particularités anatomiques des organs infracérébraux de péripates caraïbes (Onychophores). B Mus Natl Hist Nat. 1963;35:275–90.
Google Scholar
Gabe M. Sur l'existence de cellules neuro-sécrétrices chez quelques Onychophores. C R Hebd Seances Acad Sci. 1954;238:272–4.
CAS
PubMed
Google Scholar
Bouvier EL. A propos d'un travail de H. Sänger sur les Péripates. Bull Soc philomath Paris [Serie 9]. 1900;3:5–8.
Heymons R. Die Entwicklungsgeschichte der Scolopender. Zoologica. 1901;33:1–244.
Google Scholar
Stern M, Bicker G. Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study. Cell Tissue Res. 2008;333:333–8.
Article
CAS
PubMed
Google Scholar
Schürmann F-W. A note on the structure of synapses in the ventral nerve cord of the onychophoran Peripatoides leuckarti. Cell Tissue Res. 1978;186:527–34.
Article
PubMed
Google Scholar
Gaffron E. Beiträge zur Anatomie und Histologie von Peripatus. Zool Beitr. 1885;1:33–60.
Google Scholar
Dakin WJ. The eye of Peripatus. Q J Microsc Sci. 1921;65:163–72.
Google Scholar
Gardner CR, Robson EA, Stanford C. The presence of monoamines in the nervous system of Peripatopsis (Onychophora). Experientia. 1978;34:1577–8.
Article
CAS
Google Scholar
Gardner CR, Walker RJ. The roles of putative neurotransmitters and neuromodulators in annelids and related invertebrates. Prog Neurobiol. 1982;18:81–120.
Article
CAS
PubMed
Google Scholar
Schneider KC, Arthropoda X, Protracheata A. In: Schneider KC, editor. Lehrbuch der Vergleichenden Histologie der Tiere. Jena, Germany: Gustav Fischer; 1902. p. 443–57.
Gaffron E. Beiträge zur Anatomie und Histologie von Peripatus. II Theil. Zool Beitr. 1885;1:145–63.
Google Scholar
Moseley HN. On the structure and development of Peripatus capensis. Philos Trans R Soc Lond B Biol Sci. 1874;164:757–82.
Google Scholar
Strausfeld NJ, Buschbeck EK, Gomez RS, The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach O, Kutsch W, editors. The nervous system of invertebrates: an evolutionary and comparative approach. Basel: Birkhäuser Verlag; 1995. p. 349–81.
Chapter
Google Scholar
Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K. Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem. 1998;5:11–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heuer CM, Müller CHG, Todt C, Loesel R. Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool. 2010;7:13.
Article
PubMed
PubMed Central
Google Scholar
Loesel R, Heuer CM. The mushroom bodies—prominent brain centres of arthropods and annelids with enigmatic evolutionary origin. Acta Zool. 2010;91:29–34.
Article
Google Scholar
Heuer CM, Loesel R. Three-dimensional reconstruction of mushroom body neuropils in the polychaete species Nereis diversicolor and Harmothoe areolata (Phyllodocida, Annelida). Zoomorphology. 2009;128:219–26.
Article
Google Scholar
Wolff GH, Strausfeld NJ. Genealogical correspondence of mushroom bodies across invertebrate phyla. Curr Biol. 2015;25:38–44.
Article
CAS
PubMed
Google Scholar
Strausfeld NJ, Wolff GH, Sayre ME. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife. 2020;9:e52411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doeffinger C, Hartenstein V, Stollewerk A. Compartmentalisation of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, the optic ganglia and the mushroom body. J Comp Neurol. 2010;518:2612–32.
PubMed
Google Scholar
Sinakevitch I, Long SM, Gronenberg W. The central nervous system of whip spiders (Amblypygi): large mushroom bodies receive olfactory and visual input. J Comp Neurol. 2021;529:1642–58.
Article
PubMed
Google Scholar
Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell. 2010;142:800–9.
Article
CAS
PubMed
Google Scholar
Wolff GH, Thoen HH, Marshall J, Sayre ME, Strausfeld NJ. An insect-like mushroom body in a crustacean brain. eLife. 2017;6.
Strausfeld NJ. Mushroom bodies and reniform bodies coexisting in crabs cannot both be homologs of the insect mushroom body. J Comp Neurol. 2021;529:3265–71.
Article
PubMed
Google Scholar
Strausfeld NJ. Nomen est omen, cognitive dissonance, and homology of memory centers in crustaceans and insects. J Comp Neurol. 2020;528:2595–601.
Article
PubMed
Google Scholar
Stemme T, Iliffe TM, Bicker G. Olfactory pathway in Xibalbanus tulumensis: remipedian hemiellipsoid body as homologue of hexapod mushroom body. Cell Tissue Res. 2016;363:635–48.
Article
CAS
PubMed
Google Scholar
Maza FJ, Sztarker J, Cozzarin ME, Lepore MG, Delorenzi A. A crabs' high-order brain center resolved as a mushroom body-like structure. J Comp Neurol. 2021;529:501–23.
Article
CAS
PubMed
Google Scholar
Maza FJ, Sztarker J, Shkedy A, Peszano VN, Locatelli FF, Delorenzi A. Context-dependent memory traces in the crab’s mushroom bodies: functional support for a common origin of high-order memory centers. Proc Natl Acad Sci USA. 2016;113:E7957–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sayre ME, Strausfeld NJ. Mushroom bodies in crustaceans: insect-like organization in the caridid shrimp Lebbeus groenlandicus. J Comp Neurol. 2019;527:2371–87.
Article
PubMed
Google Scholar
Strausfeld NJ, Sayre ME. Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. J Comp Neurol. 2019.
Machon J, Krieger J, Meth R, Zbinden M, Ravaux J, Montagné N, et al. Neuroanatomy of a hydrothermal vent shrimp provides insights into the evolution of crustacean integrative brain centers. eLife. 2019;8:e47550.
Fanenbruck M, Harzsch S, Wägele JW. The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci USA. 2004;101:3868–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stegner ME, Brenneis G, Richter S. The ventral nerve cord in Cephalocarida (Crustacea): new insights into the ground pattern of Tetraconata. J Morphol. 2014;275:269–94.
Article
CAS
PubMed
Google Scholar
Kalderon D, Rubin GM. Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. Genes Dev. 1988;2:1539–56.
Article
CAS
PubMed
Google Scholar
Skoulakis EM, Kalderon D, Davis RL. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron. 1993;11:197–208.
Article
CAS
PubMed
Google Scholar
Heuer CM, Kollmann M, Binzer M, Schachtner J. Neuropeptides in insect mushroom bodies. Arthropod Struct Dev. 2012;41:199–226.
Article
PubMed
Google Scholar
Farris SM, Sinakevitch I. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct Dev. 2003;32:79–101.
Article
PubMed
Google Scholar
Gross V, Epple L, Mayer G. Organization of the central nervous system and innervation of cephalic sensory structures in the water bear Echiniscus testudo (Tardigrada: Heterotardigrada) revisited. J Morphol. 2021;282:1298–312.
Article
CAS
PubMed
Google Scholar
Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M. Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol. 2010;220:117–22.
Article
PubMed
Google Scholar
Steinhoff POM, Uhl G, Harzsch S, Sombke A. Visual pathways in the brain of the jumping spider Marpissa muscosa. J Comp Neurol. 2020;528.
Long SM. Variations on a theme: morphological variation in the secondary eye visual pathway across the order of Araneae. J Comp Neurol. 2021;529:259–80.
Article
PubMed
Google Scholar
Lehmann T, Melzer RR. Also looking like Limulus?—Retinula axons and visual neuropils of Amblypygi (whip spiders). Front Zool. 2018;15:52.
Article
PubMed
PubMed Central
Google Scholar
Lehmann T, Melzer RR. Looking like Limulus?–Retinula axons and visual neuropils of the median and lateral eyes of scorpions. Front Zool. 2013;10:40.
Article
PubMed
PubMed Central
Google Scholar
Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci. 2003;4:266–75.
Article
CAS
PubMed
Google Scholar
Menzel R. The insect mushroom body, an experience-dependent recoding device. J Physiol Paris. 2014;108:84–95.
Article
PubMed
Google Scholar
Guven-Ozkan T, Davis RL. Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem. 2014;21:519–26.
Article
PubMed
PubMed Central
Google Scholar
Stopfer M. Central processing in the mushroom bodies. Curr Opin Insect Sci. 2014;6:99–103.
Article
PubMed
PubMed Central
Google Scholar
Owald D, Waddell S. Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol. 2015;35:178–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife. 2020;9:e62576.
Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, et al. Transsynaptic mapping of Drosophila mushroom body output neurons. eLife. 2021;10:e63379.
Skoulakis EM, Davis RL. Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron. 1996;17:931–44.
Article
CAS
PubMed
Google Scholar
Wang Z, Palmer G, Griffith LC. Regulation of Drosophila Ca2+/calmodulin-dependent protein kinase II by autophosphorylation analyzed by site-directed mutagenesis. J Neurochem. 1998;71:378–87.
Article
CAS
PubMed
Google Scholar
Ballard J, Olsen G, Faith D, Odgers W, Rowell D, Atkinson P. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science. 1992;258:1345–8.
Article
CAS
PubMed
Google Scholar
Pfeiffer K, Homberg U. Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol. 2014;59:165–84.
Article
CAS
PubMed
Google Scholar
Homberg U, Structure and functions of the central complex in insects. In: Gupta AP, editor. Arthropod brain, its evolution, development, structure, and functions. New York: John Wiley & Sons; 1987. p. 347–67.
Google Scholar
el Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol. 2018;526:2612–30.
Article
PubMed
Google Scholar
Utting M, Agricola H-J, Sandeman R, Sandeman D. Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol. 2000;416:245–61.
Article
CAS
PubMed
Google Scholar
Wolff T, Iyer NA, Rubin GM. Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J Comp Neurol. 2015;523:997–1037.
Article
PubMed
Google Scholar
Benton JL, Sandeman DC, Beltz BS. Nitric oxide in the crustacean brain: regulation of neurogenesis and morphogenesis in the developing olfactory pathway. Dev Dyn. 2007;236:3047–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway. Front Zool. 2010;7:25.
Article
PubMed
PubMed Central
Google Scholar
Sandeman D, Sandeman R, Derby C, Schmidt M. Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull. 1992;183:304–26.
Article
CAS
PubMed
Google Scholar
Groh C, Kelber C, Grübel K, Rössler W. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers. Proc R Soc B Biol Sci. 2014;281:20140432.
Article
Google Scholar
Hamanaka Y, Minoura R, Nishino H, Miura T, Mizunami M. Dopamine- and tyrosine hydroxylase-immunoreactive neurons in the brain of the American cockroach, Periplaneta americana. PLoS ONE. 2016;11:e0160531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Steinhoff PO, Sombke A, Liedtke J, Schneider JM, Harzsch S, Uhl G. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): insights from histology, immunohistochemistry and microCT analysis. Arthropod Struct Dev. 2017;46:156–70.
Article
PubMed
Google Scholar
Schildberger K. Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus. Cell Tissue Res. 1983;230:573–86.
Article
CAS
PubMed
Google Scholar
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, et al. Neuroarchitecture of the central complex of the desert locust: tangential neurons. J Comp Neurol. 2019;528:906–34.
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-TB, et al. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife. 2014;3:e04577.
Kamhi JF, Barron AB, Narendra A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr Biol. 2020;30(e3433):3432–7.
Article
CAS
PubMed
Google Scholar
Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven JE. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr Biol. 2020;30(e3432):3438–43.
Article
CAS
PubMed
Google Scholar
Green J, Maimon G. Building a heading signal from anatomically defined neuron types in the Drosophila central complex. Curr Opin Neurobiol. 2018;52:156–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honkanen A, Adden A, da Silva FJ, Heinze S. The insect central complex and the neural basis of navigational strategies. J Exp Biol. 2019;222:jeb188854.
Article
PubMed
Google Scholar
Kirwan JD, Graf J, Smolka J, Mayer G, Henze MJ, Nilsson D-E. Low-resolution vision in a velvet worm (Onychophora). J Exp Biol. 2018;221:jeb175802.
Article
PubMed
Google Scholar
Manton SM. The evolution of arthropodan locomotory mechanisms. Part 11: Habits, morphology and evolution of the Uniramia (Onychophora, Myriapoda and Hexapoda) and comparisons with the Arachnida, together with a functional review of uniramian musculature. Zool J Linn Soc. 1973;53:257–375.
Article
Google Scholar
Manton SM. Locomotory habits and the evolution of the larger arthropodan groups. In. Evolution [Symposia of the Society for Experimental Biology, vol. 7]. London: Society for Experimental Biology; 1953. 339–376.
Loesel R, Seyfarth E-A, Bräunig P, Agricola H-J. Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications. Arthropod Struct Dev. 2011;40:210–20.
Article
CAS
PubMed
Google Scholar
Sombke A, Rosenberg J, Myriapoda. In: Schmidt-Rhaesa A, Harzsch S, Purschke G, editors. Structure and evolution of invertebrate nervous systems. Oxford: Oxford University Press; 2016. p. 478–91.
Google Scholar
Sombke A, Lipke E, Kenning M, Carsten HG, Müller CHG, Hansson BS, et al. Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci. 2012;13:1.
Loesel R, Nässel DR, Strausfeld NJ. Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev. 2002;31:77–91.
Article
PubMed
Google Scholar
Strausfeld NJ. Atlas of an insect brain. Berlin, Heidelberg: Springer-Verlag; 1976.
Book
Google Scholar
Gross V, Mayer G. Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo. 2015;6:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitzthum H, Homberg U, Agricola H. Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol. 1996;369:419–37.
Article
CAS
PubMed
Google Scholar
Homberg U. Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev. 2008;37:347–62.
Article
PubMed
Google Scholar
Groh C, Lu Z, Meinertzhagen IA, Rössler W. Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J Comp Neurol. 2012;520:3509–27.
Article
PubMed
Google Scholar
Träger U, Wagner R, Bausenwein B, Homberg U. A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J Comp Neurol. 2008;506:288–300.
Article
PubMed
Google Scholar
Ignell R, Anton S, Hansson BS. The antennal lobe of Orthoptera—anatomy and evolution. Brain Behav Evol. 2001;57:1–17.
Article
CAS
PubMed
Google Scholar
Schmitt F, Stieb SM, Wehner R, Rössler W. Experience-related reorganization of giant synapses in the lateral complex: potential role in plasticity of the sky-compass pathway in the desert ant Cataglyphis fortis. Dev Neurobiol. 2016;76:390–404.
Article
PubMed
Google Scholar
Held M, Berz A, Hensgen R, Muenz TS, Scholl C, Rössler W, et al. Microglomerular synaptic complexes in the sky-compass network of the honeybee connect parallel pathways from the anterior optic tubercle to the central complex. Front Behav Neurosci. 2016;10:186.
Yasuyama K, Meinertzhagen IA, Schürmann F-W. Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol. 2002;445:211–26.
Article
PubMed
Google Scholar
Groh C, Rössler W. Comparison of microglomerular structures in the mushroom body calyx of neopteran insects. Arthropod Struct Dev. 2011;40:358–67.
Article
PubMed
Google Scholar
Frambach I, Rössler W, Winkler M, Schürmann F-W. F-actin at identified synapses in the mushroom body neuropil of the insect brain. J Comp Neurol. 2004;475:303–14.
Article
CAS
PubMed
Google Scholar
Leiss F, Groh C, Butcher NJ, Meinertzhagen IA, Tavosanis G. Synaptic organization in the adult Drosophila mushroom body calyx. J Comp Neurol. 2009;517:808–24.
Article
PubMed
Google Scholar
Stegner MEJ, Richter S. Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev. 2011;40:221–43.
Article
PubMed
Google Scholar
Mellon DF Jr, Alones V, Lawrence MD. Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system. J Comp Neurol. 1992;321:93–111.
Article
PubMed
Google Scholar
Sullivan JM, Beltz BS. Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol. 2001;441:9–22.
Article
CAS
PubMed
Google Scholar
Brown S, Wolff G. Fine structural organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus. J Comp Neurol. 2012;520:2847–63.
Article
PubMed
Google Scholar
Wolff GH, Harzsch S, Hansson BS, Brown S, Strausfeld NJ. Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol. 2012;520:2824–46.
Article
PubMed
Google Scholar
Strausfeld NJ, Barth FG. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol. 1993;328:43–62.
Article
CAS
PubMed
Google Scholar
Schachtner J, Schmidt M, Homberg U. Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev. 2005;34:257–99.
Article
Google Scholar
Kollmann M, Schmidt R, Heuer CM, Schachtner J. Variations on a theme: antennal aobe architecture across Coleoptera. PLoS ONE. 2016;11:e0166253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandeman DC, Kenning M, Harzsch S. Adaptive trends in malacostracan brain form and function related to behavior. In: Derby C, Thiel M, editors. Crustacean nervous system and their control of behaviour, the natural history of the Crustacea. vol. 3: Oxford University Press; 2014. 11–48.
Sandeman DC, Luff SE. The structural organization of glomerular neuropile in the olfactory and accessory lobes of an Australian freshwater crayfish, Cherax destructor, Z Zellforsch Mikrosk Anat 1973;142:37–61.
Sullivan JM, Beltz BS. Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol. 2004;470:25–38.
Article
PubMed
Google Scholar
Strausfeld NJ, Weltzien P, Barth FG. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol. 1993;328:63–75.
Article
CAS
PubMed
Google Scholar
Harzsch S, Krieger J. Crustacean olfactory systems: a comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol. 2018;161:23–260.
Article
CAS
PubMed
Google Scholar
van Wijk M, Wadman WJ, Sabelis MW. Gross morphology of the central nervous system of a phytoseiid mite. Exp Appl Acarol. 2006;40:205–16.
Article
PubMed
Google Scholar
Sombke A, Klann AE, Lipke E, Wolf H. Primary processing neuropils associated with the malleoli of camel spiders (Arachnida, Solifugae): a re-evaluation of axonal pathways. Zoological Lett. 2019;5:26.
Article
PubMed
PubMed Central
Google Scholar
Drozd D, Wolf H, Stemme T. Structure of the pecten neuropil pathway and its innervation by bimodal peg afferents in two scorpion species. PLoS ONE. 2020;15:e0243753.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiegmann DD, Hebets EA, Gronenberg W, Graving JM, Bingman VP. Amblypygids: model organisms for the study of arthropod navigation mechanisms in complex environments. Front Behav Neurosci. 2016;10.
Nilsson DE, Osorio D. Homology and parallelism in arthropod sensory processing. In. Arthropod Relationships. London: Chapman & Hall; 1997. 333–347.
Eisthen HL. Why are olfactory systems of different animals so similar. Brain Behav Evol. 2002;59:273–93.
Article
PubMed
Google Scholar
Vizueta J, Escuer P, Frías-López C, Guirao-Rico S, Hering L, Mayer G, et al. Evolutionary history of major chemosensory gene families across Panarthropoda. Mol Biol Evol. 2020;37:3601–15.
Barclay S, Rowell DM, Ash J. Pheromonally mediated colonization patterns in the velvet worm Euperipatoides rowelli (Onychophora). J Zool. 2000;250:437–46.
Article
Google Scholar
Read VMSJ, Hughes RN. Feeding behaviour and prey choice in Macroperipatus torquatus (Onychophora). Proc R Soc B Biol Sci. 1987;230:483–506.
Google Scholar
Kleineidam CJ, Obermayer M, Halbich W, Rössler W. A macroglomerulus in the antennal lobe of leaf-cutting ant workers and its possible functional significance. Chem Senses. 2005;30:383–92.
Article
CAS
PubMed
Google Scholar
Kelber C, Rössler W, Roces F, Kleineidam CJ. The antennal lobes of fungus-growing ants (Attini): neuroanatomical traits and evolutionary trends. Brain Behav Evol. 2009;73:273–84.
Article
PubMed
Google Scholar
Koch SI, Groh K, Vogel H, Hannson BS, Kleineidam CJ, Grosse-Wilde E. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS ONE. 2013;8:e81518.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mobbs P. The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond B Biol Sci. 1982;298:309–54.
Article
Google Scholar
Bicker G, Kreissl S, Hofbauer A. Monoclonal antibody labels olfactory and visual pathways in Drosophila and Apis brains. J Comp Neurol. 1993;335:413–24.
Article
CAS
PubMed
Google Scholar
Abel R, Rybak J, Menzel R. Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol. 2001;437:363–83.
Article
CAS
PubMed
Google Scholar
Galizia CG, Insect olfaction. Firestein S, Beauchamp G, editors. The senses: a comprehensive reference. vol. 4: Olfaction and Taste. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier; 2008. p. 725–69.
Google Scholar
Schultzhaus JN, Saleem S, Iftikhar H, Carney GE. The role of the Drosophila lateral horn in olfactory information processing and behavioral response. J Insect Physiol. 2017;98:29–37.
Article
CAS
PubMed
Google Scholar
Scholtz G, Edgecombe GD, Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner RA, editors. Crustacea and Arthropod Relationship, vol. 16. Boca Raton, Florida: CRC Press; 2005. p. 139–65.
Chapter
Google Scholar
Manton SM. Studies on the Onychophora VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the Arthropoda. Philos Trans R Soc B. 1949;233:483–580.
Google Scholar
Butt FH. Head development in the arthropods. Biological Reviews (Cambridge). 1960;35:43–91.
Article
Google Scholar
Budd GE. A palaeontological solution to the arthropod head problem. Nature. 2002;417:271–5.
Article
CAS
PubMed
Google Scholar
Scholtz G, Edgecombe GD. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol. 2006;216:395–415.
Article
PubMed
Google Scholar
Ou Q, Shu D, Mayer G. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun. 2012;3:1261.
Article
PubMed
CAS
Google Scholar
Frase T, Richter S. Nervous system development in the fairy shrimp Branchinella sp. (Crustacea: Branchiopoda: Anostraca): insights into the development and evolution of the branchiopod brain and its sensory organs. J Morphol. 2016;277:1423–46.
Article
PubMed
Google Scholar
Janssen R. Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran frontal appendages, and its implications for the arthropod head problem. EvoDevo. 2017;8:1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ortega-Hernández J, Budd GE. The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. Arthropod Struct Dev. 2016;45:185–99.
Article
PubMed
Google Scholar
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head—a palaeobiological and developmental perspective. Arthropod Struct Dev. 2017;46:354–79.
Article
PubMed
Google Scholar
Aria C. Macroevolutionary patterns of body plan canalization in euarthropods. Paleobiology. 2020;46:569–93.
Article
Google Scholar
Mayer G. Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata. Zoomorphology. 2006;125:1–12.
Article
Google Scholar
Janssen R, Eriksson BJ, Budd GE, Akam M, Prpic NM. Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev. 2010;12:363–72.
Article
CAS
PubMed
Google Scholar
Legg DA, Vannier J. The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia. 2013;46:540–50.
Article
Google Scholar
Whittington HB. The lobopod animal Aysheaia pedunculata Walcott, Middle Cambrian, Burgess Shale, British Columbia. Philos Trans R Soc B Biol Sci. 1978;284:165–97.
Google Scholar
Edgecombe GD, Legg DA. Origins and early evolution of arthropods. Palaeontology. 2014;57:457–68.
Article
Google Scholar
Rogers BT, Kaufman TC. Structure of the insect head in ontogeny and phylogeny: a view from Drosophila. Int Rev Cytol. 1997;174:1–84.
Article
CAS
PubMed
Google Scholar
Prpic N-M, Wigand B, Damen WG, Klingler M. Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol. 2001;211:467–77.
Article
CAS
PubMed
Google Scholar
Boyan GS, Bräunig P, Posser S, Williams JLD. Embryonic development of the sensory innervation of the clypeo-labral complex: further support for serially homologous appendages in the locust. Arthropod Struct Dev. 2003;32:289–302.
Article
CAS
PubMed
Google Scholar
Ungerer P, Wolff C. External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology. 2005;124:89–99.
Article
Google Scholar
Kimm MA, Prpic NM. Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia. Zoomorphology. 2006;125:147–55.
Article
Google Scholar
Posnien N, Bashasab F, Bucher G. The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev. 2009;11:480–8.
Article
CAS
PubMed
Google Scholar
Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol. 2012;222:189–216.
Article
PubMed
Google Scholar
Frase T, Richter S. The brain and the corresponding sense organs in calanoid copepods—evidence of vestiges of compound eyes. Arthropod Struct Dev. 2020;54:100902.
Article
PubMed
Google Scholar
Ou Q, Liu J, Shu D, Han J, Zhang Z, Wan X, et al. A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagerstätte, Southwest China, and its phylogenetic implications. J Paleontol. 2011;85:587–94.
Thompson I, Jones DS. A possible onychophoran from the Middle Pennsylvanian Mazon Creek Beds of northern Illinois. J Paleontol. 1980;54:588–96.
Google Scholar
Haug JT, Mayer G, Haug C, Briggs DEG. A Carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Curr Biol. 2012;22:1673–5.
Article
CAS
PubMed
Google Scholar
Halberg KA, Persson D, Møbjerg N, Wanninger A, Kristensen RM. Myoanatomy of the marine tardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). J Morphol. 2009;270:996–1013.
Article
PubMed
Google Scholar
Smith MR, Ortega-Hernández J. Hallucigenia's onychophoran-like claws and the case for Tactopoda. Nature. 2014;514:363–6.
Article
CAS
PubMed
Google Scholar
Budd GE. The origin and evolution of the euarthropod labrum. Arthropod Struct Dev. 2021;62:101048.
Article
PubMed
Google Scholar
Zeng H, Zhao F, Niu K, Zhu M, Huang D. An early Cambrian euarthropod with radiodont-like raptorial appendages. Nature. 2020;588:101–5.
Article
CAS
PubMed
Google Scholar
Haug JT, Waloszek D, Maas A, Liu Y, Haug C. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology. 2012;55:369–99.
Article
Google Scholar
Chen J, Waloszek D, Maas A. A new “great appendage” arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia. 2004;37:3–20.
Article
Google Scholar
Waloszek D, Chen J, Maas A, Wang X. Early Cambrian arthropods — new insights into arthropod head and structural evolution. Arthropod Struct Dev. 2005;34:189–205.
Article
Google Scholar
Liu Y, Ortega-Hernández J, Zhai D, Hou X. A reduced labrum in a Cambrian great-appendage euarthropod. Curr Biol. 2020;30:1–5.
Article
CAS
Google Scholar
Berry R, van Kleef J, Stange G. The mapping of visual space by dragonfly lateral ocelli. J Comp Physiol A. 2007;193:495–513.
Article
Google Scholar
Mizunami M. Neural organization of ocellar pathways in the cockroach brain. J Comp Neurol. 1995;352:458–68.
Article
CAS
PubMed
Google Scholar
Greven H. Comments on the eyes of tardigrades. Arthropod Struct Dev. 2007;36:401–7.
Baer A, Mayer G. Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol. 2012;273:1079–88.
Haibel A, Beckmann F, Dose T, Herzen J, Ogurreck M, Müller M, et al. Latest developments in microtomography and nanotomography at PETRA III. Powder Diffr. 2010;25:161–4.
Greving I, Wilde F, Ogurreck M, Herzen J, Hammel JU, Hipp A, et al. P05 imaging beamline at PETRA III: first results. Proc Spie. 2014;9212:92120O–92121–8.
Moosmann J, Ershov A, Weinhardt V, Baumbach T, Prasad MS, LaBonne C, et al. Time-lapse X-ray phase-contrast microtomography for in vivo imaging and analysis of morphogenesis. Nat Protoc. 2014;9:294–304.
van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, et al. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt Express. 2016;24:25129–47.
van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, et al. The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy. 2015;157:35–47.
Palenstijn WJ, Batenburg KJ, Sijbers J. Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). J Struct Biol. 2011;176:250–3.
Article
CAS
PubMed
Google Scholar
Romeis B. Mikroskopische Technik, vol. 16. R. Oldenbourg Verlag: München; 1968.
Google Scholar
Heidenhain M. Über die mallorysche Bindegewebsfärbung mit Karmin und Azokarmin als Vorfarben. Z Wiss Mikrosk. 1915;32:361–72.
Google Scholar
Geidies H. Abgeänderte Azan-Methoden. Mikrokosmos. 1954;42:239–40.
Google Scholar
Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, et al. Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci. 1996;16:3154–65.
Harzsch S, Hansson BS. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci. 2008;9:58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ott SR. Confocal microscopy in large insect brains: zinc–formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. J Neurosci Methods. 2008;172:220–30.
Article
CAS
PubMed
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Meth. 2012;9:676–82.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.
Article
CAS
Google Scholar
Bucher D, Scholz M, Stetter M, Obermayer K, Pflüger HJ. Correction methods for three-dimensional reconstructions from confocal images: I. tissue shrinking and axial scaling. J Neurosci Methods. 2000;100:135–43.
Article
CAS
PubMed
Google Scholar
Nischik ES, Krieger J. Evaluation of standard imaging techniques and volumetric preservation of nervous tissue in genetically identical offspring of the crayfish Procambarus fallax cf. virginalis (Marmorkrebs). PeerJ. 2018;6:e5181.
Article
PubMed
PubMed Central
CAS
Google Scholar