Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J, et al. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front Microbiol. 2017;8:1–13.
Article
Google Scholar
Kaksonen M, Roux AAA. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19:313–26.
Article
CAS
PubMed
Google Scholar
Robinson MS. Forty years of clathrin-coated vesicles. Traffic. 2015;16:1210–38.
Article
CAS
PubMed
Google Scholar
Naslavsky N, Caplan S. The enigmatic endosome–sorting the ins and outs of endocytic trafficking. J Cell Sci. 2018;131(13):jcs216499.
Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaiswal JK, Rivera VM, Simon SM. Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell. 2009;137:1308–19.
Article
PubMed
PubMed Central
Google Scholar
Radulescu AE, Siddhanta A, Shields D. A role for clathrin in reassembly of the Golgi apparatus. Mol Biol Cell. 2007;18:94–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142:S6–15.
Article
PubMed
Google Scholar
Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol. 2018;53:70–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid hylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pipaliya S, Santos R, Salas-Leiva D, Balmer EA, Wirdnam CD, Roger AJ, et al. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol. 2021;19:1–23.
Article
CAS
Google Scholar
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.”. PNAS. 2009;106:3859–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of eukaryotes. Trends Ecol Evol. 2020;35:43–55.
Article
PubMed
Google Scholar
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y. A new view of the tree of life. Nature Microbiol. 2016;1(5):1–6.
Caccì OSM, Ryan U. Molecular epidemiology of giardiasis. Mol Biochem Parasitol. 2008;160:75–80.
Article
CAS
Google Scholar
Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382:209–22.
Article
PubMed
Google Scholar
Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE, et al. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One. 2013;8:e72788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: epithelium, mucus, and microbiota. Tissue Barriers. 2017;5:1–16.
Article
CAS
Google Scholar
Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the gut microbiota: dangerous liaisons. Front Microbiol. 2021;11:618106.
Faso C, Hehl AB. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol. 2011;41:471–80.
Article
CAS
PubMed
Google Scholar
Benchimol M. The nuclei of Giardia lamblia - new ultrastructural observations. Arch Microbiol. 2005;183:160–8.
Article
CAS
PubMed
Google Scholar
Soltys BJ, Falah M, Gupta RS. Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to BiP. J Cell Sci. 1996;109:1909–17.
Article
CAS
PubMed
Google Scholar
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, Van Der Giezen M, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–6.
Article
CAS
PubMed
Google Scholar
Lanfredi-Rangel A, Attias M, de Carvalho TM, Kattenbach WM, de Souza W. The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol. 1998;123:225–35.
Article
CAS
PubMed
Google Scholar
Marti M, Regös A, Li Y, Schraner EM, Wild P, Müller N, et al. An ancestaral secretory apparatus in the protozoan parasite Giardia intestinalis. J Biol Chem. 2003;278:24837–48.
Article
CAS
PubMed
Google Scholar
Cernikova L, Faso C, Hehl AB. Phosphoinositide-binding proteins mark, shape and functionally modulate highly-diverged endocytic compartments in the parasitic protist Giardia lamblia; 2020.
Book
Google Scholar
Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB. Static clathrin assemblies at the peripheral vacuole plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog. 2016;12:1–33.
Article
CAS
Google Scholar
Rivero MR, Miras SL, Quiroga R, Rópolo AS, Touz MC. Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication. Mol Microbiol. 2011;79:1204–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frontera LS, Moyano S, Quassollo G, Lanfredi-Rangel A, Rópolo AS, Touz MC. Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci Rep. 2018;8:18020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, DeSouza W, et al. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell. 2009;8:1665–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Titze B, Genoud C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell. 2016;108:307–23.
Article
CAS
PubMed
Google Scholar
Kizilyaprak C, Daraspe J, Humbel BM. Focused ion beam scanning electron microscopy in biology. J Microsc. 2014;254:109–14.
Article
CAS
PubMed
Google Scholar
Wei D, Jacobs S, Modla S, Zhang S, Young CL, Cirino R, et al. High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. BioTechniques. 2012;53:41–8.
Article
CAS
PubMed
Google Scholar
Tůmová P, Nohýnková E, Klingl A, Wanner G. A rapid workflow for the characterization of small numbers of unicellular eukaryotes by using correlative light and electron microscopy. J Microbiol Methods. 2020;172:105888.
Dawson SC. An insider’s guide to the microtubule cytoskeleton of Giardia. Cell Microbiol. 2010;12:588–98.
Article
CAS
PubMed
Google Scholar
Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ. TrakEM2 software for neural circuit reconstruction. PloS One. 2012;7(6):e38011.
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019;16:1226–32.
Article
CAS
PubMed
Google Scholar
Sommer C, Straehle C, Koethe U, Hamprecht FA. Ilastik: Interactive learning and segmentation toolkit. In2011 IEEE international symposium on biomedical imaging: From nano to macro 2011 Mar 30 (pp. 230-233). IEEE.
Kan A. Machine learning applications in cell image analysis. Immunol Cell Biol. 2017;95:525–30.
Article
PubMed
Google Scholar
Sommer C, Gerlich DW. Machine learning in cell biology – teaching computers to recognize phenotypes. J Cell Sci. 2013;126(126):5529–39.
CAS
PubMed
Google Scholar
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell. 2010;141:497–508.
Article
CAS
PubMed
Google Scholar
Suresh B, Saminathan A, Chakraborty K, Cui C, Krishnan Y. Tubular lysosomes harbor active ion gradients and poise macrophages for phagocytosis. PNAS. 2020;18:2020.12.05.413229.
Google Scholar
Hipolito VEB, Ospina-Escobar E, Botelho RJ. Lysosome remodelling and adaptation during phagocyte activation. Cell Microbiol. 2018;20:1–8.
Article
CAS
Google Scholar
Combs CA, Shroff H. Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci. 2017;2017:2.1.1–2.1.25.
Google Scholar
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A. 2000;97:8206–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006;440:935–9.
Article
CAS
PubMed
Google Scholar
Kao HP, Kao HP, Verkman a S, Verkman a S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J. 1994;67:1291–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones SA, Shim S-H, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods. 2011;8:499–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution reconstruction microscopy. Science (1979). 2008;319:810–3.
CAS
Google Scholar
Olivier N, Keller D, Rajan VS, Gönczy P, Manley S. Simple buffers for 3D STORM microscopy. Biomed Opt Express. 2013;4:885.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods. 2011;8:1027–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Brown JR, Schwartz CL, Heumann JM, Dawson SC, Hoenger A. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol. 2016;194:38–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jørgensen A, Sterud E. Phylogeny of Spironucleus (Eopharyngia: Diplomonadida: Hexamitinae). Protist. 2007;158:247–54.
Article
PubMed
CAS
Google Scholar
Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, et al. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol. 2008;8:1–14.
Article
CAS
Google Scholar
Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AGB, Roger AJ, Svärd SG, et al. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 2016;14:1–15.
PubMed
PubMed Central
CAS
Google Scholar
Paull GC, Matthews RA. Spironucleus vortens, a possible cause of hole-in-the-head disease in cichlids. Dis Aquat Organ. 2001;45:197–202.
Article
CAS
PubMed
Google Scholar
Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10(2):e1004053.
Sterud E, Poynton SL. Spironucleus vortens (Diplomonadida) in the Ide, Leuciscus idus (L.)(Cyprinidae): a warm water hexamitid flagellate found in northern Europe. J Eukaryot Microbiol. 2002;49(2):137–45.
Ástvaldsson Á, Hultenby K, Svärd SG, Jerlström-Hultqvist J. Proximity staining using enzymatic protein tagging in diplomonads. mSphere. 2019;4:1–15.
Article
Google Scholar
Day KJ, Casler JC, Glick BS. Budding yeast has a minimal endomembrane system. Dev Cell. 2018;44:56–72.e4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lealda N, Silva C, Elias CA. Tritrichomonas foetus: ultrastructure of endocytosis and cytochemistry. Exp Parasitol. 1986;62:405–15.
Article
Google Scholar
Rosa IDA, Caruso MB, Rodrigues SP, Geraldo RB, Kist LW, Bogo MR, et al. New insights on the Golgi complex of Tritrichomonas foetus. Parasitology. 2014;141:241–53.
Article
CAS
Google Scholar
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harbor Perspect Biol. 2014;6(10):a016048.
Midlej V, Pereira-Neves A, Kist LW, Bogo MR, Benchimol M. Ultrastructural features of Tritrichomonas mobilensis and comparison with Tritrichomonas foetus. Vet Parasitol. 2011;182:171–80.
Article
PubMed
Google Scholar
Traub LM. Regarding the amazing choreography of clathrin coats. PLoS Biol. 2011;9:3–7.
Article
CAS
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195.
Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harbor Perspect Biol. 2014;6(5):a016725.
Morgan GW, Allen CL, Jeffries TR, Hollinshead M, Field MC. Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J Cell Sci. 2001;114:2605–15.
Article
CAS
PubMed
Google Scholar
Adung’a VO, Gadelha C, Field MC. Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic. 2013;14:440–57.
Article
PubMed
CAS
Google Scholar
Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell. 2005;123:305–20.
Article
CAS
PubMed
Google Scholar
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26(10):1274–84.
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, et al. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 2019. https://doi.org/10.1093/molbev/msz147.
Füssy Z, Vinopalová M, Treitli SC, Pánek T, Smejkalová P, Čepička I, Doležal P, Hampl V. Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol Int. 2021;82:102308.
Cheon S, Zhang J, Park C. Is phylotranscriptomics as reliable as phylogenomics? Mol Biol Evol. 2020;37:3672–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo YH, Ansari H, Otto TD, Linger CMK, Olisko MK, Michálek J, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 2015;4:1–41.
Article
Google Scholar
Richardson E, Dacks JB. Distribution of membrane trafficking system components across ciliate diversity highlights heterogenous organelle-associated machinery. Traffic. 2022. https://doi.org/10.1111/tra.12834.
Fotin A, Cheng Y, Grigorieff N, Walz T, Harrison SC, Kirchhausen T. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature. 2004;429:2004.
Google Scholar
Rapoport I, Boll W, Yu A, Bocking T, Kirchhausen T. A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. Mol Biol Cell. 2008;19:3250–63.
Article
Google Scholar
Suga H, Chen Z, De Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun. 2013;4:1–9.
Article
CAS
Google Scholar
King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, et al. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 2013;14:1–15.
Article
CAS
Google Scholar
Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R, et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0194487.
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1(4):1–7.
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun. 2021;12:1–13.
CAS
Google Scholar
Manna PT, Obado SO, Boehm C, Gadelha C, Sali A, Chait BT, et al. Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci. 2017;130:1379–92.
CAS
PubMed
PubMed Central
Google Scholar
Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, et al. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 2009;37(SUPPL. 1):526–30.
Article
CAS
Google Scholar
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science (1979). 2007;315:207–13.
Google Scholar
Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature. 2018;564:410–4.
Article
CAS
PubMed
Google Scholar
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2017;430:1–7.
Google Scholar
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33:2302–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol. 2012;857:231–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilbur JD, Hwang PK, Ybe JA, Lane M, Sellers BD, Jacobson MP, et al. Conformation switching of clathrin light chain regulates clathrin lattice assembly. Dev Cell. 2010;18:841–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jerlström-Hultqvist J, Einarsson E, Svärd SG. Stable transfection of the diplomonad parasite Spironucleus salmonicida. Eukaryot Cell. 2012;11:1353–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barash NR, Nosala C, Pham JK, Mcinally SG, Gourguechon S, Dawson SC. Giardia colonizes and encysts in high-density foci in the murine small intestine. mSphere. 2017;2:1–20.
Article
Google Scholar
Adam RD. Biology of Giardia lamblia. Clin Microbiol Rev. 2001;14:447–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia. Microbes Infect. 2009;12:71–80.
Article
PubMed
CAS
Google Scholar
Cotton JA, Beatty JK, Buret AG. Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol. 2011;41:925–33.
Article
CAS
PubMed
Google Scholar
Touz M, Feliziani C, Rópolo A. Membrane-associated proteins in Giardia lamblia. Genes (Basel). 2018;9:404.
Article
CAS
Google Scholar
Jacquemet G, Carisey AF, Hamidi H, Henriques R, Leterrier C. The cell biologist's guide to super-resolution microscopy. J Cell Sci. 2020;133(11):jcs240713.
Hamann E, Tegetmeyer HE, Di R, Littmann S, Ahmerkamp S, Chen J, et al. Syntrophic linkage between predatory Carpediemonas and specific prokaryotic populations. ISME J. 2017;11:1205–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yubuki N, Simpson AGB, Leander BS. Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist. 2013;164:423–39.
Article
CAS
PubMed
Google Scholar
Yubuki N, Huang SSCC, Leander BS. Comparative ultrastructure of fornicate excavates, including a novel free-living relative of diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist. 2016;167:584–96.
Article
PubMed
Google Scholar
Ebneter JA, Hehl AB. The single epsin homolog in Giardia lamblia localizes to the ventral disk of trophozoites and is not associated with clathrin membrane coats. Mol Biochem Parasitol. 2014;197:24–7.
Article
CAS
PubMed
Google Scholar
Benchimol M. A new set of vesicles in Giardia lamblia. Exp Parasitol. 2002;102:30–7.
Article
PubMed
Google Scholar
McCaffery JM, Gillin FD. Giardia lamblia: ultrastructural basis of protein transport during growth and encystation. Exp Parasitol. 1994;79:220–35.
Article
CAS
PubMed
Google Scholar
McCaffery JM, Faubert GM, Gillin FD. Traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol. 1994;79:236–49.
Article
CAS
PubMed
Google Scholar
Stefanic S, Palm D, Svärd SG, Hehl AB. Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia *. J Biol Chem. 2006;281:7595–604.
Article
CAS
PubMed
Google Scholar
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009;122:2846–56.
Article
CAS
PubMed
Google Scholar
Acosta-Virgen K, Chávez-Munguía B, Talamás-Lara D, Lagunes-Guillén A, Martínez-Higuera A, Lazcano A, et al. Giardia lamblia: identification of peroxisomal-like proteins. Exp Parasitol. 2018;191:36–43.
Article
CAS
PubMed
Google Scholar
Link F, Borges AR, Jones NG, Engstler M. To the surface and back: exo- and endocytic pathways in Trypanosoma brucei. Front Cell Dev Biol. 2021;9:1–15.
Article
Google Scholar
Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22:4991–5002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morf L, Spycher C, Rehrauer H, Fournier CA, Morrison HG, Hehl AB. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryot Cell. 2010;9:1566–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaechter V, Schraner E, Wild P, Hehl AB. The single dynamin family protein in the primitive protozoan giardia lamblia is essential for stage conversion and endocytic transport. Traffic. 2008;9:57–71.
Article
CAS
PubMed
Google Scholar
Konrad C, Spycher C, Hehl AB. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog. 2010;6:e1000835.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017;33:2424–6.
Article
CAS
PubMed
Google Scholar
Mateos JM, Guhl B, Doehner J, Barmettler G, Kaech A, Ziegler U. Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy. Sci Rep. 2016;6:34062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004. https://doi.org/10.1093/nar/gkh340.
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–8.
Article
CAS
PubMed
Google Scholar
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.
Article
CAS
PubMed
Google Scholar
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–60.
Article
CAS
PubMed
Google Scholar
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017;46:493–6.
Article
CAS
Google Scholar
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.
Article
CAS
PubMed
Google Scholar